Skip to main content

Advertisement

Log in

Mullins effect behaviour under compression in micelle-templated silica and micelle-templated silica/agarose systems

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanical properties of bioceramic conformed pieces based on micelle-templated silica (MTS) such as SBA15, MCM41 and MCM48 as well as MTS/agarose systems have been evaluated under static and cyclic compressive tests. The MTS pieces exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape ceramic–agarose pieces following a low temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency up to a 60% strain in ceramic MTS/agarose systems leading to a maximum strength of 10–50 MPa, without losing their initial cylindrical structure. This combination of ceramic and organic matrix contributes to avoiding the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve of MTS/agarose systems indicate a Mullins-like effect similar to that found in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in MTS bioceramics and MTS bioceramic/agarose systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vallet-Regí M. Current trends on porous inorganic materials for biomedical applications. Chem Eng J. 2008;137:1–3.

    Article  Google Scholar 

  2. Sánchez-Salcedo S, Balas F, Izquierdo-Barba I, Vallet-Regí M. In vitro structural changes in porous HA/β-TCP scaffolds under simulated body fluid. Acta Biomater. 2009;5:2738–51.

    Article  Google Scholar 

  3. Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2006;2:557–65.

    Article  Google Scholar 

  4. Izquierdo-Barba I, Vallet-Regí M, Kupferschmidt N, Terasaki O, Schmidtchen A, Malmsten M. Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials. 2009;30:5729–36.

    Article  CAS  Google Scholar 

  5. Vallet-Regí M. Bioceramics: where do we come from and which are the future expectations. Key engineering materials. Switzerland: Trans Tech Publications; 2008. p. 1.

    Google Scholar 

  6. Kresge CT, Leonowicz ME, Roth WJ, Vartulli JC, Beck JS. Ordered mesoporous molecular-sieves synthesized by a liquid–crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  7. Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM. Revisiting silica based ordered mesoporous materials: medical applications. J Mater Chem. 2006;16:26–31.

    Article  Google Scholar 

  8. Manzano M, Vallet-Regí M. Novel developments in ordered mesoporus materials for drug delivery. J Mater Chem. 2010;20:5593–604.

    Article  CAS  Google Scholar 

  9. Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regí M. Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J. 2008;137:30–7.

    Article  CAS  Google Scholar 

  10. Vallet-Regí M, Colilla M, González B. Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev. 2011;40:596–607.

    Article  Google Scholar 

  11. Alcaide M, Serrano MC, Pagani R, Sánchez-Salcedo S, Vallet-Regí M, Portolés MT. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30:45–51.

    Article  CAS  Google Scholar 

  12. Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25:2893–9.

    Article  CAS  Google Scholar 

  13. Yalpani M. Polysaccharides: synthesis, modifications and structure/property relations. In: Yalpani M, editor. Studies in organic chemistry. New York: Elsevier; 1998. p. 441.

    Google Scholar 

  14. Hoffman A. Hydrogels for biomedical applications. Adv Drug Deliver Rev. 2002;43:3–12.

    Article  Google Scholar 

  15. Gu WY, Huang CY, Yao H, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behaviour of agarose gels in confined compression. J Biomech. 2003;36:593–8.

    Article  CAS  Google Scholar 

  16. Vallet-Regí M. Nanostructured mesoporous silica matrices in Nanomedicine. J Intern Med. 2010;267:22–43.

    Article  Google Scholar 

  17. Hartmann M, Vinu A. Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption. Langmuir. 2002;18:8010–6.

    Article  CAS  Google Scholar 

  18. Sánchez-Salcedo S, Nieto A, Vallet-Regí M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J. 2008;137:62–71.

    Article  Google Scholar 

  19. ASTM E 384–84. Standard test method for microhardness of materials. Philadelphia: ASTM Committee on Standards; 1984.

    Google Scholar 

  20. IUPAC Manual of symbols and terminology, Appendix 2, Pt. 1. Colloid and surface chemistry: Pure Apl Chem. 1972; 31: 578.

  21. Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38:377–99.

    Article  Google Scholar 

  22. Franks GV, Lange FF. Mechanical behaviour of saturated, consolidated, alumina powder compacts: effect of particle size and morphology on the plastic-to-brittle transition. Colloid Surf A. 1999;146:5–17.

    Article  CAS  Google Scholar 

  23. Rumpf H. AIME, agglomeration. In: Knepper WA, editor. The strength of granules and agglomerates. New York: Wiley-Interscience; 1962. p. 379–418.

    Google Scholar 

  24. Mullins L. Effect of stretching on the properties of rubber. J Rubber Res. 1947;16:275–89.

    CAS  Google Scholar 

  25. Diani J, Fayolle B, Gilornini P. A review on the Mullins effect. Eur Polym J. 2009;45:601–12.

    Article  CAS  Google Scholar 

  26. Webber RE, Creton C. Large strain hysteresis and Mullins effect of tough double-network hydrogels. Macromolecules. 2007;40:2919–27.

    Article  CAS  Google Scholar 

  27. Sharpe WN. Springer handbook of experimental solid mechanics. In: Sharpe J, William N, editors. Traditional constitutive relations. Berlin: Springer; 2008. p. 172.

    Google Scholar 

  28. Puértolas JA, Vadillo JL, Sánchez-Salcedo S, Nieto A, Gómez-Barrena E, Vallet-Regí M. Compression behaviour of biphasic calcium phosphate, biphasic calcium phosphate/agarose scaffolds for bone regeneration. Acta Biomater. 2011;7:841–7.

    Article  Google Scholar 

  29. Lyons JG, Geever LM, Nugent MJD, Kennedy JE, Higginbotham CL. Development and characterisation of an agar–polyvinyl alcohol blend hydrogel. J Mech Behav Biomed Mater. 2009;2:485–93.

    Google Scholar 

  30. Peña E, Peña JA, Doblaré M. On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuos and discontinuos damage models. Int J Sol Struct. 2009;46:1727–35.

    Article  Google Scholar 

  31. Miyata S, Furukawa KS, Ushida T, Nitta Y, Tateishi T. Static and dynamic mechanical properties of extracellular matrix synthesized by cultured chondrocytes. Mater Sci Eng C. 2004;24:425–9.

    Article  Google Scholar 

  32. Chung C, Beecham M, Mauck RL, Burdick JA. Tailored hydrogel crosslinking and degradation to enhance neocartilage formation by mesenchymal stem cells in hyaluronic acid hydrogels. Biomaterials. 2009;30:4287–96.

    Article  CAS  Google Scholar 

  33. Hench LL, Wilson J. Introduction to bioceramics. Singapore: World Science; 1993.

    Google Scholar 

  34. Blatz PJ, Sharda SC, Tschoegl NW. Strain energy function for rubber-like materials based on a generalized measure of strain. J Rheology. 1974;18:145–61.

    Article  CAS  Google Scholar 

  35. Mu Y, Lyddiatt A, Pacek AW. Manufacture by water/oil emulsification of porous agarose beads effect of processing conditions on mean particle size, size distribution and mechanical properties. Chem Eng Process. 2005;44:1157–66.

    Article  CAS  Google Scholar 

  36. Scandiucci de Freitas P, Wirz D, Stolz M, Göpfert B, Friederich NF, Daniels AU. Pulsatile dynamic stiffness of cartilage-like materials and use of agarose gels to validate mechanical methods and models. J Biomed Mater Res B. 2006;78B:347–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vallet-Regí.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puértolas, J.A., Vadillo, J.L., Sánchez-Salcedo, S. et al. Mullins effect behaviour under compression in micelle-templated silica and micelle-templated silica/agarose systems. J Mater Sci: Mater Med 23, 229–238 (2012). https://doi.org/10.1007/s10856-011-4482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4482-5

Keywords

Navigation