Skip to main content
Log in

An innovative multi-component variate that reveals hierarchy and evolution of structural damage in a solid: application to acrylic bone cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A major limitation of solid mechanics is the inability to take into account the influence of hierarchy and evolution of the inherent microscopic structure on evaluating the performance of materials. Irreversible damage and fracture in solids, studied commonly as cracks, flaws, and conventional material properties, are by no means descriptive of the subsequent responses of the microstructures to the applied load. In this work, we addressed this limitation through the use of a novel multi-component variate. The essence of this variate is that it allows the presentation of the random damage in the amplitude spectrum, probability space, and probabilistic entropy. Its uniqueness is that it reveals the evolution and hierarchy of random damage in multi- and trans-scales, and, in addition, it includes the correlations among the various damage features. To better understand the evolution and hierarchy of random damage, we conducted a series of experiments designed to test three variants of a poly (methyl methacrylate) (PMMA) bone cement, distinguished by the methods used to sterilize the cement powder. While analysis of results from conventional tension tests and scanning electron microscopy failed to pinpoint differences among these cement variants, our multi-component variate allowed quantification of the multi- and trans-scale random damage events that occurred in the loading process. We tested the statistical significance of damage states to differentiate the responses at the various loading stages and compared the damage states among the groups. We also interpreted the hierarchical and evolutional damage in terms of the probabilistic entropy (s), the applied stress (σ), and the trajectory of damage state. We found that the cement powder sterilization method has a strong influence on the evolution of damage states in the cured cement specimens when subjected to stress in controlled mechanical tests. We have shown that in PMMA bone cements, our damage state variate has the unique ability to quantify and discern the history and evolution of microstructural damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Szolwinski MP, Farris TN. Mechanics of fretting fatigue crack formation. Wear. 1996;198(1–2):93–107.

    Article  CAS  Google Scholar 

  2. Bao Y, Wierzbicki T. A comparative study on various ductile crack formation criteria. J Eng Mater Technol. 2004;126(3):314–25.

    Article  CAS  Google Scholar 

  3. Lawn BR. Partial cone crack formation in a brittle material loaded with a sliding spherical indenter. Proc R Soc Lond Ser A Math Phys Sci. 1967;299(1458):307–16.

    Article  Google Scholar 

  4. Arndt PF, Nattermann T. Criterion for crack formation in disordered materials. Phys Rev B. 2001;63(13):134–204.

    Article  Google Scholar 

  5. Sinnett-Jones P, Browne M, Moffat A, Saffari N, Buffiere J-Y, Sinclair N. Crack initiation processes in acrylic bone cement. J Biomed Mater Res A. 2008;89:1088–97.

    Google Scholar 

  6. Sinnett-Jones PE, Browne M, Ludwig W, Buffie`re J-Y, Sinclair I. Microtomography assessment of failure in acrylic bone cement. Biomaterials. 2005;26:6460–6.

    Article  CAS  Google Scholar 

  7. Gilbert CJ, Ritchie RO. Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl Phys Lett. 1997;71(4):476–8.

    Article  CAS  Google Scholar 

  8. Ng ET, Qi G. Investigation of fatigue crack propagation behavior of bone cement by wavelet based acoustic emission analysis. Eng Fract Mech. 2001;68(13):1477–92.

    Article  Google Scholar 

  9. Brown EN, White SR, Sottos NR. Fatigue crack propagation in microcapsule toughened epoxy. J Mat Sci. 2006;41(19):6266–73.

    Article  CAS  Google Scholar 

  10. Qi G, Ng ET. A new method to evaluate material fatigue behavior. J Mater Sci. 2000;36:2483–9.

    Article  Google Scholar 

  11. Roques A, Browne M, Thompson J, Rowland C, Taylor A. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique. Biomaterials. 2004;25(5):769–78.

    Article  CAS  Google Scholar 

  12. Gómez-Mancillaa J, Sinou J-J, Nosova VR, Thouverezb F, Zambrano A. The influence of crack-imbalance orientation and orbital evolution for an extended cracked Jeffcott rotor. Comptes Rendus Mecanique. 2004;332(12):955–62.

    Article  Google Scholar 

  13. Lu Y, Ye L, Su Z, Huang N. Quantitative evaluation of crack orientation in aluminium plates based on Lamb waves. Smart Mater Struct. 2007;16(5):1907.

    Article  Google Scholar 

  14. Qi G, Li J, Mouchon WP, Lewis G. Defect-induced fatigue microcrack formation in cement mantle. J Biomed Mater Res A. 2005;75(2):414–24.

    Google Scholar 

  15. Suresh S, Omkar SN, Ganguli R, Mani V. Identification of crack location and depth in a cantilever beam using a modular neural network approach. Smart Mater Struct. 2004;13:907.

    Article  Google Scholar 

  16. Rizos PF, Aspragathos N, Dimarogonas AD. Identification of crack location and magnitude in a cantilever beam from the vibration modes. J Sound Vib. 1990;138(3):381–8.

    Article  Google Scholar 

  17. Ge M. Analysis of source location algorithms overview and non-iterative methods, part I & II. J Acoust Emiss. 2004;21:14–51.

    Google Scholar 

  18. Qi G, Li J, Mann KA, Mouchon WP, Hamstad MA, Salehi A, Whitten SA. 3D real time methodology monitoring cement failures in THA. J Biomed Mater Res A. 2004;71(3):391–402.

    Article  Google Scholar 

  19. Qi G, Pujol J, Fan Z. 3-D AE visualization of bone-cement fatigue locations. J Biomed Mater Res. 2000;52(2):256–60.

    Article  CAS  Google Scholar 

  20. Garcimartin A, Guarino A, Bellon L, Ciliberto S. Statistical properties of fracture precursors. Phys Rev Lett. 1997;79(17):3202–5.

    Article  CAS  Google Scholar 

  21. Evans AG, Dalgleish BJ, He M, Hutchinson JW. On crack path selection and the interface fracture energy in bimaterial systems. Acta Metall. 1989;37(12):3249–54.

    Article  CAS  Google Scholar 

  22. Mecholsky JJ, Rice RW, Freiman SW. Prediction of fracture energy and flaw size in glasses from measurements of mirror size. J Am Ceram Soc. 1998;57(10):440–3.

    Article  Google Scholar 

  23. Mann KA, Edidin AA, Ordway NR, Manley MT. Fracture toughness of CoCr alloy–PMMA cement interface. J Biomed Mater Res. 2000;38:211–9.

    Article  Google Scholar 

  24. Sham-Tsonga S, Sanboh L. A thermodynamic approach to the interaction between dislocation and crack and its applications. Eng Fract Mech. 1985;22(6):1105–15.

    Article  Google Scholar 

  25. Ballarini R, Denda M. The interaction between a crack and a dislocation dipole. Int J Fract. 1988;37(1):61–71.

    Article  Google Scholar 

  26. Zhu T, Li J, Yip S. Atomistic study of dislocation loop emission from a crack tip. Phys Rev Lett. 2004;93(2):025503.

    Article  Google Scholar 

  27. Wunderlich B. A thermodynamic description of the defect solid state of linear high polymers. Polymer. 1964;5:125–34.

    Article  CAS  Google Scholar 

  28. Fleischer RL, Price PB, Walker RM. Ion explosion spike mechanism for formation of charged-particle tracks in solids. J Appl Phys. 1965;36(11):3645–52.

    Article  CAS  Google Scholar 

  29. Selinger Jonathan V, Bruinsma RF. Statistical mechanics of defects in polymer liquid crystals. J Phys II Fr. 1992;2:1215.

    Article  Google Scholar 

  30. Trachenko K, Dove MT, Salje EKH. Structural changes in zircon under a-decay irradiation. Phys Rev B. 2002;65:180102.

    Article  Google Scholar 

  31. Bai YL, Wang HY, Xia MF, Ke FJ. Statistical mesomechanics of solid, linking coupled multiple space and time scales. Appl Mech Rev. 2005;58:372–88.

    Article  Google Scholar 

  32. Bai YL, Wang HY, Xia MF, Ke FJ. Trans-scale mechanics: looking for the missing links between continuum and micro/nanoscopic reality. Acta Mech Sin. 2008;24:111–26.

    Article  Google Scholar 

  33. Qi G, Fan M, Wayne SF. Measurements of a multi-component variate in assessing evolving damage states using a polymeric material. IEEE Trans Instrum Meas. 2011;60(1):206–13.

    Article  Google Scholar 

  34. Qi G, Wayne SF, Penrose O, Lewis G, Hochstein JI, Mann KA. Probabilistic characteristics of random damage events and their quantification in acrylic bone cement. J Mater Sci Mater Med. 2010;21(11):2915–22.

    Article  CAS  Google Scholar 

  35. Hamstad MA. A review: acoustic emission, a tool for composite-materials studies. Exp Mech. 1986;26(1):7–13.

    Article  Google Scholar 

  36. McMaster RC, editor. Nondestructive testing handbook. Columbus: ASNT; 1982.

    Google Scholar 

  37. Battie A. Acoustic emission, principles and instrumentation. Sandia National Lab, Report SAND82-2825; 1983.

  38. Kramer EJ. Craze fibril formation and breakdown. Polym Eng Sci. 1984;24(10):761–9.

    Article  CAS  Google Scholar 

  39. Kander RG. A study of damage accumulation in unidirectional glass reinforced composites via acoustic emission monitoring. Polym Compos. 1991;12(4):237–45.

    Article  CAS  Google Scholar 

  40. Dunegan HL, Harris DO, Tatro CA. Fracture analysis by use of acoustic emission. Eng Fract Mech. 1968;1:105–22.

    Article  CAS  Google Scholar 

  41. Evans AG, Linzer M, Russell LR. Acoustic emission and crack propagation in polycrystalline alumina. Mater Sci Eng. 1974;15(2–3):253–61.

    Google Scholar 

  42. Fang D, Berkovits A. Fatigue design model based on damage mechanisms revealed by acoustic emission measurements. J Eng Mater Technol. 1995;117(2):200–8.

    Article  CAS  Google Scholar 

  43. Berkovits A, Fang D. Study of fatigue crack characteristics by acoustic emission. Eng Fract Mech. 1995;51(3):401–16.

    Article  Google Scholar 

  44. Qi G, Barhorst AA. On predicting the fracture behavior of CFR and GFR composites using wavelet-based AE techniques. Eng Fract Mech. 1997;58(4):363–85.

    Article  Google Scholar 

  45. Qi G, Barhorst AA, Hashemi J. Discrete wavelet decomposition of AE signals from CFR composites. Compos Sci Technol. 1997;57(4):389–403.

    Article  CAS  Google Scholar 

  46. Bassim MN, Lawrence SS, Liu CD. Detection of the onset of fatigue crack growth in rail steels using acoustic emission. Eng Fract Mech. 1994;47(2):207–14.

    Article  Google Scholar 

  47. Caprino G, Teti R. Quantitative acoustic emission for fracture behavior of center-hole GFRP laminates. J Comp Mat. 1994;28(13):1237–49.

    Article  Google Scholar 

  48. Harris DO, Dunegan HL. Continuous monitoring of fatigue-crack growth by acoustic-emission techniques. Exp Mech. 1974;14:71–80.

    Article  Google Scholar 

  49. Hardy HRJ. Acoustic emission microseismic activity, vol. 1: principles, techniques and geotechnical applications. London: Taylor and Francis; 2003.

    Book  Google Scholar 

  50. Tymiak N, Daugela A, Wyrobek T, Warren O. Highly localized acoustic emission monitoring of nanoscale indentation contacts. J Mater Res. 2003;18(4):784–96.

    Article  CAS  Google Scholar 

  51. Ma X-G, Komvopoulos K. Nanoscale pseudoelastic behavior of indented titanium–nickel films. Appl Phys Lett. 2003;83:3773–5.

    Article  CAS  Google Scholar 

  52. Dimiduk DM, Woodward C, LeSar R, Uchic MD. Scale-free intermittent flow in crystal plasticity. Science. 2006;312(5777):1188–90.

    Article  CAS  Google Scholar 

  53. Siegmann A, Kander RG. In situ acoustic emission monitoring and mechanical testing in the scanning electron microscope. J Mater Sci Lett. 1991;10(11):619–21.

    Article  CAS  Google Scholar 

  54. Qi G. Numerical assessment of the quality of AE locations in the presence of noises. J Acoust Emiss. 2000;17:111–20.

    Google Scholar 

  55. Qi G, Li j. Experimental–computational solution to fatigue induced microcrack source localization in cemented hip arthroplasty models. NDT & E Int. 2007;40(5):378–89.

    Article  CAS  Google Scholar 

  56. Li H, Bao Y, Ou J. Structural damage identification based on integration of information fusion and Shannon entropy. Mech Syst Signal Process. 2008;22:1427–40.

    Article  Google Scholar 

  57. Li J, Qi G. Improving source location accuracy of acoustic emission in complicated structures. J Nondestruct Eval. 2009;28:1–8.

    Article  Google Scholar 

  58. Ohtsu M. Acoustic emission theory for moment tensor analysis. Res Nondestruct Eval. 1995;6(3):169–84.

    Google Scholar 

  59. Ohtsu M, Okamoto T, Yuyama S. Moment tensor analysis of AE for cracking mechanisms in concrete. ACI Struct J. 1998;95(2):87–95.

    Google Scholar 

  60. Thio HK, Kanamori H. Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope. Bull Seismol Soc Am. 1995;85(4):1021–38.

    Google Scholar 

  61. Dahm T. Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys J Int. 1996;124:245–57.

    Article  Google Scholar 

  62. Colombo IS, Main G, Forde MC. Assessing damage of reinforced concrete beam using ‘‘b-value’’ analysis of acoustic emission signals. J Mater Civil Eng. 2003;15(3):280–6.

    Article  Google Scholar 

  63. Morscher GA. Modal acoustic emission of damage accumulation in a woven SiC/SiC composite. Compos Sci Technol. 1999;59(9):687–97.

    Article  CAS  Google Scholar 

  64. Faudree M, Baer E, Hiltner A, Collister J. Characterization of damage and fracture processes in short fiber BMC composites by acoustic emission. J Compos Mater. 1988;22(12):1170–95.

    Article  CAS  Google Scholar 

  65. Gibbs JW. Elementary principles in statistical mechanics. New York;: Dover; 1960.

    Google Scholar 

  66. Penrose O. Foundations of statistical mechanics—a deductive treatment. New York: Dover Publications; 2005.

    Google Scholar 

  67. Lewis G. Apparent fracture toughness of acrylic bone cement: effect of test specimen configuration and sterilization method. Biomaterials. 1999;20(1):69–78.

    Article  CAS  Google Scholar 

  68. Lewis G, Mladsi S. Effect of sterilization method on properties of Palacos® R acrylic bone cement. Biomaterials. 1998;19(1):117–24.

    Article  CAS  Google Scholar 

  69. Wright DD, Lautenschlager E. P., Gilbert JL. Bending and frcture toughness of woven serfl-reinforced composite polymethyl methacrylate. In: The 5th World Biomedical Materials Congress, Toronto, Canada; May 1996. p. 916.

  70. Hughes KF, Ries MD, Pruitt LA. Structural degradation of acrylic bone cements due to in vivo and simulated aging. J Biomed Mater Res. 2002;65A:126–35.

    Article  Google Scholar 

  71. Shen J, Chen C, Sauer JA. A numerical simulation for effective elastic moduli of plates with various distributions and sizes of cracks. In: International conference on polymers and plastics rubber. London; 1983. p. 6.1–6.10.

  72. Lewis G, Li Y. Dependence of in vitro fatigue properties of PMMA bone cement on the polydispersity index of its powder. J Mech Behavior Biomed Mater. 2010;3:94–101.

    Article  Google Scholar 

  73. Qi G. Attenuation of acoustic emission body waves in acrylic bone cement and synthetic bone using wavelet time-scale analysis. J Biomed Mater Res. 2000;52(1):148–56.

    Article  CAS  Google Scholar 

  74. Qi G, Thota S, Vankamamidi S. Mechanical test reports—SmartSet® MV bone cement. Memphis, TN 38152: Medical Acoustic Research Lab., University of Memphis; 2008.

  75. Huang NC, Korobeinik MY. Interfacial debonding a spherical inclusion embedded in an infinite medium under remote stress. Int J Fract. 2001;107:11–30.

    Article  Google Scholar 

  76. Argon AS, Salama MM. Growth of crazes in glassy polymers. Philos Mag. 1977;36(5):1217–34.

    Article  CAS  Google Scholar 

  77. Koenczoel L, Hiltner A, Baer E. Crazing and fracture in polystyrene studied by acoustic emission. J Appl Phys. 1986;60(8):2651–4.

    Article  CAS  Google Scholar 

  78. Bucknall CB. New criterion for craze initiation. Polymer. 2007;48(4):1030–41.

    Article  CAS  Google Scholar 

  79. McCrum NG, Buckley CP, Bucknall CB. Principles of polymer engineering. Oxford: Oxford University Press; 1997.

    Google Scholar 

  80. Marshall GP, Culver LE, Williams JG. Craze growth in polymethylmethcraylate: a fracture mechanics approach. Proc R Soc Lond A. 1970;319:165–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. L. Bai and his group at The State Key Laboratory of Non-linear Mechanics, Institute of Mechanics, Chinese Academy of Sciences and Dr. W. B. Luo, Xiangtan University, Hunan Province, China, for many discussions and suggestions; and Mr. Jinke Mo, Mr. Bin Zhang, Mr. Rick Voyles, Mr. Robert Jordan, Mr. Srikanth Thota, Ms. Sundari Vankamamidi, and Mr. Rajesh Muthireddy, all of The University of Memphis, for their many contributions to various experimental and computational aspects of the work. Funding was partially provided by NIH/NIAMS (Grant Number AR051119) and The University of Memphis (Faculty Research Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, G., Fan, M., Lewis, G. et al. An innovative multi-component variate that reveals hierarchy and evolution of structural damage in a solid: application to acrylic bone cement. J Mater Sci: Mater Med 23, 217–228 (2012). https://doi.org/10.1007/s10856-011-4481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4481-6

Keywords

Navigation