Skip to main content

Advertisement

Log in

Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A biomimetic poly(propylene carbonate) (PPC) porous scaffold with nanofibrous chitosan network within macropores (PPC/CSNFs) for bone tissue engineering was fabricated by a dual solid–liquid phase separation technique. PPC scaffold with interconnected solid pore wall structure was prepared by the first phase separation, which showed a high porosity of 91.9% and a good compressive modulus of 14.2 ± 0.56 MPa, respectively. By the second phase separation, nanofibrous chitosan of 50–500 nm in diameter was formed in the macropores with little influence on the pore structure and the mechanical properties of PPC scaffold. The nanofibrous chitosan content was calculated to be 9.78% by elemental analysis. After incubation in SBF for 14 days, more apatite crystals were deposited on the pore surface as well as the nanofibrous chitosan surface of PPC/CSNFs scaffold compared with PPC scaffold. The in vitro culture of bone mesenchymal stem cells showed that PPC/CSNFs scaffold exhibited a better cell viability than PPC scaffold. After implantation in rabbits for 16 weeks, the defect was entirely repaired by PPC/CSNFs scaffold, as opposed to the incomplete healing for PPC scaffold. It indicated that PPC/CSNFs scaffold showed a faster in vivo osteogenesis rate than PPC scaffold. Hereby, PPC/CSNFs scaffold will be a potential candidate for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  Google Scholar 

  2. Wang HN, Li YB, Zuo Y, Li JH, Ma SS, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338–48.

    Article  CAS  Google Scholar 

  3. Ji Y, Ghosh K, Shu XZ, Li BQ, Sokolov JC, Prestwich GD, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials. 2006;27:3782–92.

    Article  CAS  Google Scholar 

  4. Ma PX, Zhang RY. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60–72.

    Article  CAS  Google Scholar 

  5. Liu XH, Ma PX. The nanofibrous architecture of poly(l-lactic acid)-based functional copolymers. Biomaterials. 2010;31:259–69.

    Article  Google Scholar 

  6. Li XT, Zhang Y, Chen GQ. Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials. 2008;29:3720–8.

    Article  CAS  Google Scholar 

  7. Liu XH, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30:4094–103.

    Article  CAS  Google Scholar 

  8. Wei GB, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A. 2006;78:306–15.

    Google Scholar 

  9. Liu XH, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009;30:2252–8.

    Article  CAS  Google Scholar 

  10. Hay ED. Cell biology of extracellular matrix. 2nd ed. New York: Plenum Press; 1991.

    Book  Google Scholar 

  11. Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972;54:626–37.

    Article  CAS  Google Scholar 

  12. Hasegawa S, Neo M, Tamura J, Fujibayashi S, Takemoto M, Shikinami Y, et al. In vivo evaluation of a porous hydroxyapatite/poly-dl-lactide composite for bone tissue engineering. J Biomed Mater Res A. 2007;81:930–8.

    Google Scholar 

  13. Kima SS, Park MS, Jeon O, Choi CY, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:1399–409.

    Article  Google Scholar 

  14. Ren J, Zhao P, Ren TB, Gu SY, Pan KF. Poly(d,l-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med. 2008;19:1075–82.

    Article  CAS  Google Scholar 

  15. Welle A, Kröger M, Döring M, Niederer K, Pindel E, Chronakis S. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials. 2007;28:2211–9.

    Article  CAS  Google Scholar 

  16. Zhang L, Zheng ZH, Xi J, Gao Y, Ao Q, Gong YD, et al. Improved mechanical property and biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for blood vessel tissue engineering by blending with poly(propylene carbonate). Eur Polym J. 2007;43:2975–86.

    Article  CAS  Google Scholar 

  17. Zhang J, Qi HX, Wang HJ, Hu P, Ou LL, Guo SH, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly(propylene carbonate) graft. Artif Organs. 2006;30:898–905.

    Article  CAS  Google Scholar 

  18. Lim SH, Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Rev. 2003;C43:223–69.

    Article  CAS  Google Scholar 

  19. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176–84.

    Article  CAS  Google Scholar 

  20. Zeng R, Tu M, Liu HW, Zhao JH, Zha ZG, Zhou CR. Preparation, structure and drug release behaviour of chitosan-based nanofibres. IET Nanobiotechnol. 2009;3:8–13.

    Article  CAS  Google Scholar 

  21. Yu YC, Roontga V, Daragan VA, Mayo KH, Tirrell M, Fields GB. Structure and dynamics of peptide-amphiphiles incorporating triple helical protein like molecular architecture. Biochemistry. 1999;38:1659–68.

    Article  CAS  Google Scholar 

  22. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    Article  CAS  Google Scholar 

  23. Zeng R, Tu M, Liu HW, Zhao JH, Zha ZG, Zhou CR. Preparation, structure, drug release and bioinspired mineralization of chitosan-based nanocomplexes for bone tissue engineering. Carbohyd Polym. 2009;78:107–11.

    Article  CAS  Google Scholar 

  24. Li L, Hsieh YL. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohyd Res. 2006;341:374–81.

    Article  CAS  Google Scholar 

  25. Zhao JH, Han WQ, Chen HD, Tu M, Zeng R, Shi YF, Cha ZG, Zhou CR. Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phaseseparation technique. Carbohyd Polym. 2011;83:1541–6.

    Article  CAS  Google Scholar 

  26. Ma ZW, Gao CY, Gong YH, Shen JC. Paraffin spheres as porogen to fabricate poly(l-Lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. J Biomed Mater Res B. 2003;67B:610–7.

    Article  CAS  Google Scholar 

  27. Chen VJ, Ma PX. Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials. 2004;25:2065–73.

    Article  CAS  Google Scholar 

  28. Kokubo T.Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process.Thermochim Acta. 1996; 280–281:479–90.

  29. Jiang LY, Li YB, Wang JX, Zhang L, Wen JQ, Gong M. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohyd Polym. 2008;74:680–4.

    Article  CAS  Google Scholar 

  30. Chu XH, Shi XL, Feng ZQ, Gu ZZ, Ding YT. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett. 2009;31:347–52.

    Article  CAS  Google Scholar 

  31. Shin SY, Park HN, Kim KH, Lee MH, Choi YS, Park YJ, Lee YM, et al. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol. 2005;76:1778–84.

    Article  CAS  Google Scholar 

  32. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  33. Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 2007;28:335–43.

    Article  CAS  Google Scholar 

  34. Panda RN, Hsieh MF, Chung RJ, Chin TS. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids. 2003;64:193–9.

    Article  CAS  Google Scholar 

  35. Ma GP, Qian B, Yang JX, Hu CQ, Nie J. Synthesis and properties of photosensitive chitosan derivatives (1). Int J of Biol Macromol. 2010;46:558–61.

    Article  CAS  Google Scholar 

  36. Zhao JH, Wang J, Tu M, Luo BH, Zhou CR. Improving the cell affinity of a poly(d,l-lactide) film modified by grafting collagen via a plasma technique. Biomed Mater. 2006;1:247–52.

    Article  CAS  Google Scholar 

  37. Lao LH, Wang YJ, Zhu Y, Zhang YY, Gao CY. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci. 2011;22:1873–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Huantian Zhang’s kind help in the discussion of biological results analysis, and thankful to financial support from the National High Technology Research and Development Program of China (863 Program) (No. 2007AA09Z440) and the National Natural Science Foundation of China (No. 30900296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhao Zhao or Mei Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Han, W., Chen, H. et al. Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J Mater Sci: Mater Med 23, 517–525 (2012). https://doi.org/10.1007/s10856-011-4468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4468-3

Keywords

Navigation