Skip to main content

Advertisement

Log in

Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO2/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO2 (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7–10 μm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO2 and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks’ solution at 37°C). The HA/TiO2/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO2/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO2 and CNT contents for eliminating micro-cracks and micro-pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  CAS  Google Scholar 

  2. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;47:49–121.

    Article  Google Scholar 

  3. Li TT, Lee JH, Kobayashi T, Aoki H. Hydroxyapatite coating by dipping method, and bone bonding strength. J Mater Sci Mater Med. 1996;7:355–7.

    Article  CAS  Google Scholar 

  4. Chen J, Wolke JGC, de Groot H. Microstructure and crystallinity in hydroxyapatite coatings. Biomaterials. 1994;15:396–9.

    Article  CAS  Google Scholar 

  5. Kay JF. Calcium phosphate coatings for dental implants: current status and future potential. Dent Clin North Am. 1992;36:1–18.

    CAS  Google Scholar 

  6. Eliaz N, Sridhar MT, Mudali UK, Raj B. Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surf Eng. 2005;21:238–42.

    Article  CAS  Google Scholar 

  7. Lusquinos F, Pou J, Arias JL, Boutinguiza M, Leon B, Perez-Amor M. Alloying of hydroxyapatite onto Ti6Al4V by high power laser irradiation. J Mater Sci Mater Med. 2002;13:601–5.

    Article  CAS  Google Scholar 

  8. Laxmidhar B, Meili L. A review on fundamentals and applications of electrophoretic depositions (EPD). Prog Mater Sci. 2000;52:1–61.

    Google Scholar 

  9. Wang C, Ma J, Cheng W, Zhang RF. Thick hydroxyapatite coating by electrophoretic deposition. Mater Lett. 2002;57:99–105.

    Article  CAS  Google Scholar 

  10. Zheng XB, Ding CX. Characterization of plasma-sprayed hydroxyapatite/TiO2 composite coatings. J Therm Spray Technol. 2000;9:520–5.

    CAS  Google Scholar 

  11. Wei M, Ruys AJ, Swain MV, Kim SH, Milthorpe BK. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci. 1999;10:401–9.

    Article  CAS  Google Scholar 

  12. Zhang EL, Yang K. Coating of calcium phosphate on biometallic materials by electrophoretic deposition. Trans Nonferrous Met Soc China. 2005;15:957–64.

    CAS  Google Scholar 

  13. Catledge SA, Fries M, Vohra YK. Nanostructured surface modification for biomedical implants. Encyclopedia of Nanoscience and Nanotechnology, vol. X, California: American Scientific Publishers; 2003. p.14.

  14. Boccaccini AR, Cho J, Subhani T, Kaya C, Kaya F. Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. J Eur Ceram Soc. 2010;30:1115–29.

    Article  CAS  Google Scholar 

  15. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7:S581–613.

    Article  CAS  Google Scholar 

  16. Nieh TG, Wadsworth J. Hall-Petch relation in nanocrystalline solids. Scripta Met. 1991;25:955–8.

    Article  CAS  Google Scholar 

  17. Lin C, Han H, Zhang F, Li A. Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications. J Mater Sci Mater Med. 2008;19:2569–74.

    Article  CAS  Google Scholar 

  18. Kaya C. Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4 V alloys for biomedical applications. Ceram Int. 2008;34:1843–7.

    Article  CAS  Google Scholar 

  19. Kaya C, Singh I, Boccaccini AR. Multi-walled carbon nanotube reinforced hydroxyapatite layers on Ti6AI4 V medical implants by electrophoretic deposition (EPD). Adv Eng Mater. 2008;10:1–8.

    Article  Google Scholar 

  20. Kaya C, Kaya F, Cho J, Roether JA, Boccaccini AR. Carbon nanotube-reinforced hydroxyapatite coatings on metallic implants using electrophoretic deposition. Key Eng Mater. 2009;412:93–7.

    Article  CAS  Google Scholar 

  21. Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci. 2009;255:6736–44.

    Article  CAS  Google Scholar 

  22. Bai Y, Neupane MP, Parks IS, Lee MH, Bae TS, Watari F, Uo M. Electrophoretic deposition of carbon nanotubes-hydroxyapatite nanocomposites on titanium substrate. Mater Sci Eng. 2010;30:1043–9.

    Article  CAS  Google Scholar 

  23. Zhang B, Kwok CT, Cheng FT, Man HC. Fabrication of Nano-structured HA/CNT coatings on Ti6Al4V by electrophoretic deposition for biomedical applications. J Nanosci Nanotechnol. 2011 (In press).

  24. Albayrank O, El-Atwani O, Altintas S. Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surf Coat Technol. 2008;202:2482–7.

    Article  Google Scholar 

  25. Bae JC, Yoon YJ, Lee SJ, Baik HK. Field emission properties of carbon nanotubes deposited by electrophoresis. Phys B. 2002;323:168–70.

    Article  CAS  Google Scholar 

  26. Mondragon-Cortez P, Vargas-Gutierrez G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater Lett. 2004;58:1336–9.

    Article  CAS  Google Scholar 

  27. Cho J, Schaab S, Roether JA, Boccaccini AR. Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J Nanopart Res. 2008;10:99–105.

    Article  CAS  Google Scholar 

  28. Gomez-Vega JM, Saiz E, Tomsia AP. Glass-based coating for titanium implant alloys. J Biomed Mater Res. 1999;46:549–59.

    Article  CAS  Google Scholar 

  29. Berndt CC, Haddad GN, Farmer AJD, Gross KA. Thermal spraying for bioceramic applications. Metals Forum. 1990;14:161–73.

    CAS  Google Scholar 

  30. ASTM Standard G61-94, Conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility in iron-, nickel-, or cobalt-based alloys, ASTM Standards, ASTM, PA, USA (1994).

  31. International Standard ISO 13779-4, Implants for surgery–Hydroxyapatite–Part 4: Determination of coating adhesion strength; 2002.

  32. Wei M, Ruys AJ, Milthorpe BK, Sorrell CC. Precipitation of hydroxyapatite nano-particle: effects of precipitation method on electrophoretic deposition. J Mater Sci. 2005;16:319–24.

    Article  CAS  Google Scholar 

  33. Yutaka M, Ryuji F, Hiroshi K, Hideki T, Eiji N, Masaki T, Makoto S, Akihiko F, Xinluo Z, Sumio I, Yoshinori A. Multiwalled carbon nanotubes grown in hydrogen atmosphere: an X-ray diffraction study. Phys Rev B. 2001;64:0731051.

    Google Scholar 

  34. Contu F, Elsener B, Hohni H. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy, I: mechanically polished samples. J Biomed Mater Res. 2002;62:412–21.

    Article  CAS  Google Scholar 

  35. Hugh C, editor. Encyclopedia Britannica. 11th ed. UK: Cambridge University Press; 1911.

    Google Scholar 

  36. Sarkar P, Nicholson PS. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc. 1996;79:1987–2002.

    Article  CAS  Google Scholar 

  37. Mizutani T, Uchida S, Fujishiro Y, Sato Y. Synthesis of monodispersed hydroxyapatite using calcium polyphosphate gels as precursors. Br Ceram Trans. 1998;97:105–11.

    CAS  Google Scholar 

  38. Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol. 2000;125:407–14.

    Article  CAS  Google Scholar 

  39. Narayanan R, Seshadri SK. Synthesis and corrosion of functionally gradient TiO2 and hydroxyapatite coatings on Ti–6Al–4 V. Mater Chem Phys. 2007;106:406–11.

    Article  CAS  Google Scholar 

  40. Lavos-Valereto IC, Costa I, Wolynec S. The electrochemical behavior of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating in Hanks’ solution. J Biomed Mater Res. 2002;63:664–70.

    Article  CAS  Google Scholar 

  41. Zhang Z, Dunn MF, Xiao TD, Tomsia AP, Saiz E. Nanostructured hydroxyapatite coatings for improved adhesion and corrosion resistance for medical implants. Nanotech and Biotech Convergence, Stamford: Stamford; 6–7 May 2002. p. 291–296.

  42. Lahiri D, Benaduce AP, Rouzaud F, Solomon J, Keshri AK, Kos L, Agarwal A. Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite–carbon nanotube composite coating. J Biomed Mater Res. 2011;96:1–12.

    Article  Google Scholar 

  43. Oh I, Nomura N, Chiba A, Murayama Y, Masahashi N, Lee B, Hanada S. Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates. J Mater Sci Mater Med. 2005;16:635–40.

    Article  CAS  Google Scholar 

  44. Himann RB, Kurzweg H, Vu TA. Hydroxyapatite-bond coat systems for improved mechanical and biological performance of hip implants. In: Proceedings of the 15th International Thermal Spray Conference, France, 1998; p. 999–1005.

  45. Jarernboon W, Pimanpang S, Maensiri S, Swatsitang E, Amornkitbamrung V. Effects of multiwall carbon nanotubes in reducing microcrack formation on electrophoretically deposited TiO2 film. J Alloy Compd. 2009;476:840–6. doi:10.1016/j.jallcom.2008.09.157.

    Article  CAS  Google Scholar 

  46. Cho J, Boccaccini AR, Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. J Mater Sci. 2009;44:1934–51.

    Article  CAS  Google Scholar 

  47. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510. doi:10.1111/j.1151-2916.1991.tb07132.x.

    Article  CAS  Google Scholar 

  48. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  49. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  CAS  Google Scholar 

  50. Wu C, Xiao Y. Evaluation of the in vitro bioactivity of bioceramics. Bone Tissue Regen Insights. 2010;3:1–4.

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was fully supported by a research grant from the Science and Technology Development Fund (FDCT) of Macau SAR (Grant no. 018/2007/A) and the Research Committee of University of Macau (Project no. RG064/06-07S/KCT/FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Tat Kwok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Kwok, C.T. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications. J Mater Sci: Mater Med 22, 2249 (2011). https://doi.org/10.1007/s10856-011-4416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4416-2

Keywords

Navigation