Skip to main content
Log in

Hemocompatibility investigation of the NiTi alloy implanted with tantalum

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A composite TiO2/Ta2O5 nano-film has been formed on the NiTi shape memory alloy by Ta implantation. The wettability, protein adsorption, platelets adhesion and hemolysis tests are conducted to evaluate the hemocompatibility. The contact angle measurements showed that the surface of the NiTi alloy kept hydrophilic before and after Ta implantation, although the water contact angle increased with the increasing of implantation current. Both of the surface energy and the interfacial tension decreased after Ta implantation. The protein adsorption behavior was investigated by 125I isotope labeling. The fibrinogen adsorption was enhanced by a high surface roughness or a large interfacial tension, while the albumin adsorption was insensitive to the surface modification. Platelet adhesion and activation were weakened and the hemolysis rate was reduced at least 46% after Ta implantation due to the decreased surface energy and improved corrosion resistance ability, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shabalovskaya A. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Med Mater Eng. 2002;12:69–109.

    CAS  Google Scholar 

  2. McKenna CJ, Holmes DR, Schwartz RS. Novel stents for the prevention of restenosis. Trends Cardiovasc Med. 1997;7:245–9.

    Article  CAS  Google Scholar 

  3. Machado LG, Savi MA. Medical applications of shape memory alloys. Braz J Med Biol Res. 2003;36:683–91.

    CAS  Google Scholar 

  4. Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M. Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials. 2002;23:2997–3005.

    Article  CAS  Google Scholar 

  5. Bai ZJ, Filiaggi MJ, Dahn JR. Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium. Surf Sci. 2009;603:839–46.

    Article  CAS  Google Scholar 

  6. Plant SD, Grant DM, Leach L. Surface modification of NiTi alloy and human platelet activation under static and flow conditions. Mater Lett. 2007;61:2864–7.

    Article  CAS  Google Scholar 

  7. Armitage DA, Parker TL, Grant DM. Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res. 2003;66A:129–37.

    Article  CAS  Google Scholar 

  8. Cheng Y, Zheng YF. The corrosion behavior and hemocompatibility of TiNi alloys coated with DLC by plasma based ion implantation. Surf Coat Technol. 2006;200:4543–8.

    Article  CAS  Google Scholar 

  9. Michiardi A, Aparicio C, Ratner BD, Planell JA, Gil J. The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials. 2007;28:586–94.

    Article  CAS  Google Scholar 

  10. Sun F, Sask KN, Brash JL, Zhitomirsky I. Surface modifications of Nitinol for biomedical applications. Colloids Surf B. 2008;67:132–9.

    Article  CAS  Google Scholar 

  11. Anders André, et al. Handbook of plasma immersion ion implantation and deposition. New York: Wiley; 2000.

    Google Scholar 

  12. Poon RWY, Yeung KWK, Liu XY, Chua PK, Chung CY, Lu WW, et al. Carbon plasma immersion ion implantation of nickel–titanium shape memory alloys. Biomaterials. 2005;26:2265–72.

    Article  CAS  Google Scholar 

  13. Yeung KWK, Poon RWY, Liu XY, Ho JPY, Chung CY, Chu PK, et al. Investigation of nickel suppression and cytocompatibility of surface-treated nickel-titanium shape memory alloys by using plasma immersion ion implantation. J Biomed Mater Res A. 2005;72(3):238–45.

    CAS  Google Scholar 

  14. Liang CH, Huang NB. Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys. J Biomed Mater Res A. 2007;83:235–40.

    Google Scholar 

  15. Li Y, Wei SB, Cheng XQ, Zhang T, Cheng GA. Corrosion behavior and surface characterization of tantalum implanted TiNi alloy. Surf Coat Technol. 2008;202:3017–22.

    Article  CAS  Google Scholar 

  16. Li Y, Zhao TT, Wei SB, Xiang Y, Chen H. Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum. Mater Sci Eng C. 2010;30:1228–36.

    Google Scholar 

  17. Zhao TT, Yang RX, Zhong C, Li Y, Xiang Y. Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro. J Mater Sci. 2011;46:2529–35.

    Article  CAS  Google Scholar 

  18. Chen JY, Leng YX, Tian XB, Wang LP, Huang N, Chu PK, Yang P. Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin films. Biomaterials. 2002;23:2545–52.

    Article  CAS  Google Scholar 

  19. Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y. Hemocompatibility of titanium oxide films. Biomaterials. 2003;24:2177–87.

    Article  CAS  Google Scholar 

  20. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23(4):551–60.

    Article  Google Scholar 

  21. Busscher HJ. Wettability of surfaces in the oral cavity. In: Schrader ME, Loeb GI, editors. Modern approaches to wettability. New York: Plenum; 1992. p. 249–61.

    Google Scholar 

  22. Chen H, Zhang Z, Chen Y, Brook MA, Sheardown H. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials. 2005;26:2391–9.

    Article  CAS  Google Scholar 

  23. National Institutes of Health. In: Image J home. http://rsb.info.nih.gov/ij/download.html.

  24. Shibuichi S, Onda T, Satoh N, Tsujii K. Super water-repellent surfaces resulting from fractal structure. J Phys Chem. 1996;100:19512–7.

    Article  CAS  Google Scholar 

  25. Roy RK, Choi HW, Yi JW, Moon MW, Lee KR, Han DK, Shin JH, Kamijo A, Hasebe T. Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater. 2009;5:249–56.

    Article  CAS  Google Scholar 

  26. Palmaz JC. Intravascular stents: tissue-stent interaction and design consideration. AJR Am J Roentgenol. 1993;160:613–8.

    CAS  Google Scholar 

  27. Cai KY, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B. 2006;49:136–44.

    Article  CAS  Google Scholar 

  28. Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22:10885–8.

    Article  CAS  Google Scholar 

  29. Clarke B, Kingshott P, Hou X, Rochev Y, Gorelov A, Carroll W. Effect of Nitinol wire surface properties on albumin adsorption. Acta Biomater. 2007;3:103–11.

    Article  CAS  Google Scholar 

  30. Tan L, Bauer J, Crone WC, Albrecht RM. Biocompatibility improvement of NiTi with a functionally graded surface. In: Proceedings of the SEM annual conference on experimental mechanics, Milwaukee; 2002. p. 131–4.

  31. Goodman SL. Sheep, pig, and human platelet–material interactions with model cardiovascular biomaterials. J Biomed Mater Res. 1999;42:240–50.

    Article  Google Scholar 

  32. McPherson TB, Shim HS, Park K. Grafting of PEO to glass, Nitinol, and pyrolytic carbon surfaces by γ irradiation. J Biomed Mater Res. 1997;38:289–302.

    Article  CAS  Google Scholar 

  33. Shabalovskaya S, Anderegg J, Humbeeck JV. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.

    Article  CAS  Google Scholar 

  34. Sunny MC, Sharma CP. Titanium–protein interaction: change with oxide layer thickness. J Biomater Appl. 1991;5(6):89–98.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC), No. 50971007 and the Innovation Foundation of BUAA for PhD Graduates. Yan Li acknowledges the funding by the Program for New Century Excellent Talents in University (NCET-09-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Li, Y., Gao, Y. et al. Hemocompatibility investigation of the NiTi alloy implanted with tantalum. J Mater Sci: Mater Med 22, 2311 (2011). https://doi.org/10.1007/s10856-011-4406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4406-4

Keywords

Navigation