Skip to main content
Log in

Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

There is an increased use of nanophase titanium dioxide (TiO2) in bone implants and scaffolds. However, nano-debris is generated at the bone-biomaterial interface. Therefore, TiO2 nanoparticles (NPs) of many sizes were investigated for cytotoxic effects on murine MC3T3-E1 preosteoblasts. These TiO2 NPs induced a time- and dose-dependent decrease in cell viability. There was a significant increase in lactate dehydrogenase (LDH) release, apoptosis and mitochondrial membrane permeability following short-term exposure of the cells to TiO2 NPs. These NPs also increased granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) gene expression. Compared with the 32 nm TiO2 NPs, 5 nm TiO2 NPs were more toxic, induced more apoptosis, increased mitochondrial membrane permeability and stimulated more GM-CSF expression at a high concentration (≥100 μg/ml). The results implied that the differential toxicity was associated with variations in size, so more attention should be given to the toxicity of small NPs for the design of future materials for implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 2008;26(1):39–47.

    Article  CAS  Google Scholar 

  2. Streicher RM, Scbmidt M, Fiorito S. Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine. 2007;2(6):861–74. doi:10.2217/17435889.2.6.861.

    Article  CAS  Google Scholar 

  3. Zhang F, Zheng ZH, Chen Y, Liu XG, Chen AQ, Jiang ZB. In vivo investigation of blood compatibility of titanium oxide films. J Biomed Mater Res. 1998;42(1):128–33.

    Article  CAS  Google Scholar 

  4. Thrall L. Are red blood cells defenseless against smaller nanoparticles? Environ Sci Technol. 2006;40(14):4327–8.

    Article  CAS  Google Scholar 

  5. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7(6):1686–91. doi:10.1021/nl070678d.

    Article  CAS  Google Scholar 

  6. Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28(21):3188–97. doi:10.1016/j.biomaterials.2007.03.020.

    Article  CAS  Google Scholar 

  7. Yu WQ, Jiang XQ, Zhang FQ, Xu L. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A. 2010;94(4):1012–22. doi:10.1002/jbm.a.32687.

    Google Scholar 

  8. Kasuga T, Kondo H, Nogami M. Apatite formation on TiO2 in simulated body fluid. J Cryst Growth. 2002;235(1–4):235–40.

    Article  CAS  Google Scholar 

  9. Wang XX, Hayakawa S, Tsuru K, Osaka A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials. 2002;23(5):1353–7.

    Article  CAS  Google Scholar 

  10. Wu JM, Hayakawa S, Tsuru K, Osaka A. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J Am Ceram Soc. 2004;87(9):1635–42.

    Article  CAS  Google Scholar 

  11. Gerhardt LC, Jell GMR, Boccaccini AR. Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med. 2007;18(7):1287–98. doi:10.1007/s10856-006-0062-5.

    Article  CAS  Google Scholar 

  12. Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials. 2004;25(18):4175–83. doi:10.1016/j.biomaterials.2003.10.090.

    Article  CAS  Google Scholar 

  13. Hashimoto M, Takadama H, Mizuno M, Kokubo T. Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: effect of filler content. J Mater Sci Mater Med. 2007;18(4):661–8. doi:10.1007/s10856-007-2317-1.

    Article  CAS  Google Scholar 

  14. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7. doi:10.1126/science.1114397.

    Article  CAS  Google Scholar 

  15. Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, et al. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009;30(19):3307–17. doi:10.1016/j.biomaterials.2009.02.044.

    Article  CAS  Google Scholar 

  16. Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 2007;64(9):609–15. doi:10.1136/oem.2005.024802.

    Article  CAS  Google Scholar 

  17. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77(2):347–57. doi:10.1093/toxsci/kfh019.

    Article  CAS  Google Scholar 

  18. Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30(23–24):3891–914. doi:10.1016/j.biomaterials.2009.04.009.

    Article  CAS  Google Scholar 

  19. Karlsson HL, Gustafsson J, Cronholm P, Moller L. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol Lett. 2009;188(2):112–8. doi:10.1016/j.toxlet.2009.03.014.

    Article  CAS  Google Scholar 

  20. Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, et al. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol. 2007;19:59–65. doi:10.1080/08958370701493282.

    Article  CAS  Google Scholar 

  21. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009;4(10):634–41. doi:10.1038/nnano.2009.242.

    Article  CAS  Google Scholar 

  22. Liang GY, Pu YP, Yin LH, Liu R, Ye B, Su YY, et al. Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health A. 2009;72(11–12):740–5. doi:10.1080/15287390902841516.

    Article  CAS  Google Scholar 

  23. Oparaugo PC, Clarke IC, Malchau H, Herberts P. Correlation of wear debris-induced osteolysis and revision with volumetric wear-rates of polyethylene—a survey of 8 reports in the literature. Acta Orthop Scand. 2001;72(1):22–8.

    Article  CAS  Google Scholar 

  24. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 2000;82A(4):457–77.

    Google Scholar 

  25. Hashiguchi T, Hirano T, Shindo H, Baba K. Wear of alumina ceramics prosthesis. Arch Orthop Trauma Surg. 1999;119(1–2):30–4.

    Article  CAS  Google Scholar 

  26. Wang JX, Fan YB, Gao Y, Hu QH, Wang TC. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials. 2009;30(27):4590–600. doi:10.1016/j.biomaterials.2009.05.008.

    Article  CAS  Google Scholar 

  27. Atkins GJ, Welldon KJ, Holding CA, Haynes DR, Howie DW, Findlay DM. The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials. 2009;30(22):3672–81. doi:10.1016/j.biomaterials.2009.03.035.

    Article  CAS  Google Scholar 

  28. Di Virgilio AL, Reigosa M, de Mele MFL. Response of UMR 106 cells exposed to titanium oxide and aluminum oxide nanoparticles. J Biomed Mater Res A. 2010;92A(1):80–6. doi:10.1002/jbm.a.32339.

    Article  CAS  Google Scholar 

  29. Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006;160(2):171–7. doi:10.1016/j.toxlet.2005.07.001.

    Article  CAS  Google Scholar 

  30. Singh S, Shi TM, Duffin R, Albrecht C, van Berlo D, Hoehr D, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol. 2007;222(2):141–51. doi:10.1016/j.taap.2007.05.001.

    Article  CAS  Google Scholar 

  31. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41:284–90. doi:10.1021/es0614349a.

    Article  CAS  Google Scholar 

  32. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115:1631–7. doi:10.1289/ehp.10216.

    Article  CAS  Google Scholar 

  33. Slater TF, Sawyer B, Strauli U. Studies on succinate-tetrazolium reductase systems. 3. Points of coupling of 4 different tetrazolium salts. Biochim Biophys Acta. 1963;77(3):383–93.

    Article  CAS  Google Scholar 

  34. Di Virgilio AL, Reigosa M, Arnal PM, de Mele MFL. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater. 2009;177(1–3):711–8. doi:10.1016/j.jhazmat.2009.12.089.

    Google Scholar 

  35. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang LP. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine. 2008;4(3):226–36. doi:10.1016/j.nano.2008.04.001.

    CAS  Google Scholar 

  36. Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol. 2008;21(9):1871–7. doi:10.1021/tx800179f.

    Article  CAS  Google Scholar 

  37. Park EJ, Yi J, Chung YH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 2008;180(3):222–9. doi:10.1016/j.toxlet.2008.06.869.

    Article  CAS  Google Scholar 

  38. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–83. doi:10.1016/j.tiv.2005.06.034.

    Article  CAS  Google Scholar 

  39. Bhattacharya K, Davoren M, Boertz J, Schins RPF, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Parti Fibre Toxicol. 2009;6:17. doi:10.1186/1743-8977-6-17.

    Article  Google Scholar 

  40. Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(12):2699–711. doi:10.1080/10934520600966177.

    CAS  Google Scholar 

  41. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  Google Scholar 

  42. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69(2):581–93.

    Article  CAS  Google Scholar 

  43. Xin X, Zeng T, Dou DD, Zhao S, Du JY, Pei JJ et al. Changes of mitochondrial ultrastructures and function in central nervous tissue of hens treated with tri-ortho-cresyl phosphate (TOCP). Hum Exp Toxicol. 2010. doi:10.1177/0960327110386815.

  44. Masoud A, Kiran R, Sandhir R. Impaired mitochondrial functions in organophosphate induced delayed neuropathy in rats. Cell Mol Neurobiol. 2009;29(8):1245–55. doi:10.1007/s10571-009-9420-4.

    Article  CAS  Google Scholar 

  45. Oropesa M, de la Mata M, Maraver JG, Cordero MD, Cotan D, Rodriguez-Hernandez A et al. Apoptotic microtubule network organization and maintenance depend on high cellular ATP levels and energized mitochondria. Apoptosis. 2011. doi:10.1007/s10495-011-0577-1.

  46. Sun J, Ding TT. p53 Reaction to apoptosis induced by hydroxyapatite nanoparticles in rat macrophages. J Biomed Mater Res A. 2009;88A(3):673–9. doi:10.1002/jbm.a.31892.

    Article  CAS  Google Scholar 

  47. Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7(6):1542–50. doi:10.1021/nl070363y.

    Article  CAS  Google Scholar 

  48. Huajian G, Wendong S, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA. 2005;102(27):9469–74. doi:10.1073/pnas.0503879102.

    Article  Google Scholar 

  49. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8. doi:10.1021/nl052396o.

    Article  CAS  Google Scholar 

  50. Limbach LK, Li YC, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005;39(23):9370–6. doi:10.1021/es051043o.

    Article  CAS  Google Scholar 

  51. Darzynkiewicz Z, Bruno S, Delbino G, Gorczyca W, Hotz MA, Lassota P, et al. Features of apoptotic cells measured by flow-cytometry. Cytometry. 1992;13(8):795–808.

    Article  CAS  Google Scholar 

  52. Kerr JFR, Wyllie AH, Currie AR. Apoptosis—basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    Article  CAS  Google Scholar 

  53. Cheng YY, Huang L, Kumta SM, Lee KM, Lai FM, Tam JSK. Cytochemical and ultrastructural changes in the osteoclast-like giant cells of giant cell tumor of bone following bisphosphonate administration. Ultrastruct Pathol. 2003;27(6):385–91. doi:10.1080/01913120390248629.

    Google Scholar 

  54. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect. 2002;110(8):797–800.

    Article  CAS  Google Scholar 

  55. Zhao JS, Bowman L, Zhang XD, Vallyathan V, Young SH, Castranova V, et al. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/bid and mitochondrial pathways. J Toxicol Environ Health A. 2009;72(19):1141–9. doi:10.1080/15287390903091764.

    Article  CAS  Google Scholar 

  56. Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49(5):399–405.

    Article  CAS  Google Scholar 

  57. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260(1–3):142–9. doi:10.1016/j.tox.2009.04.001.

    Article  CAS  Google Scholar 

  58. Sterner T, Schutze N, Saxler G, Jakob F, Rader CP. Effects of clinically relevant alumina ceramic particles, circonia ceramic particles and titanium particles of different sizes and concentrations on TNF alpha release in a human monocytic cell line. Biomed Tech. 2004;49(12):340–4.

    Article  CAS  Google Scholar 

  59. Fritz EA, Glant TT, Vermes C, Jacobs JJ, Roebuck KA. Chemokine gene activation in human bone marrow-derived osteoblasts following exposure to particulate wear debris. J Biomed Mater Res A. 2006;77A(1):192–201. doi:10.1002/jbm.a.30609.

    Article  CAS  Google Scholar 

  60. Rodrigo A, Valles G, Saldana L, Rodriguez M, Martinez ME, Munuera L, et al. Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J Orthop Res. 2006;24(1):46–54. doi:10.1002/jor.20007.

    Article  CAS  Google Scholar 

  61. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 2004;61(5):442–7. doi:10.1136/oem.2003.008227.

    Article  CAS  Google Scholar 

  62. MacNee W, Donaldson K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Resp J. 2003;21:475–515. doi:10.1183/09031936.03.00403203.

    Article  Google Scholar 

  63. Valles G, Gonzalez-Melendi P, Gonzalez-Carrasco JL, Saldana L, Sanchez-Sabate E, Munuera L, et al. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials. 2006;27(30):5199–211. doi:10.1016/j.biomaterials.2006.05.045.

    Article  CAS  Google Scholar 

  64. Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology. 2010;267(1–3):125–31. doi:10.1016/j.tox.2009.10.034.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Shanghai Leading Academic Discipline Project (No. S30206, T0202) and the Science and Technology Committee of Shanghai (No. 08DZ2271100). The authors would like to thank Xiuli Zhang and Dongxia Ye (Oral Bioengineering Lab, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine) for their helpful assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yu, W., Jiang, X. et al. Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts. J Mater Sci: Mater Med 22, 1933–1945 (2011). https://doi.org/10.1007/s10856-011-4375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4375-7

Keywords

Navigation