Skip to main content

Advertisement

Log in

Fabrication and characterization of interconnected porous biodegradable poly(ε-caprolactone) load bearing scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, poly(ε-caprolactone) (PCL)/poly(ethylene oxide) (PEO) (50:50 wt%) immiscible blend was used as a model system to investigate the feasibility of a novel solventless fabrication approach that combines cryomilling, compression molding and porogen leaching techniques to prepare interconnected porous scaffolds for tissue engineering. PCL was cryomilled with PEO to form blend powders. Compression molding was used to consolidate and anneal the cryomilled powders. Selective dissolution of the PEO with water resulted in interconnected porous scaffolds. Sodium chloride salt (NaCl) was subsequently added to cryomilled powder to increase the porosity of scaffolds. The prepared scaffolds had homogeneous pore structures, a porosity of ~50% which was increased by mixing salt with the blend (~70% for 60% wt% NaCl), and a compressive modulus and strength (ε = 10%) of 60 and 2.8 MPa, respectively. The results of the study confirm that this novel approach offers a viable alternative to fabricate scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee MH, Arcidiacono JA, Bilek AM, Wille JJ, Hamill CA, Wonnacott KM, et al. Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Eng Part B Rev. 2009;1–14.

  2. Williams DJ, Sebastine IM. Tissue engineering and regenerative medicine: manufacturing challenges. IEE Proc Nanobiotechnol. 2005;152:207–10.

    Article  CAS  Google Scholar 

  3. Gabay O, Sanchez C, Taboas JM. Update in cartilage bio-engineering. Joint Bone Spine. 2010;77(4):283–6.

    Article  Google Scholar 

  4. Stoddart MJ, Grad S, Eglin D, Alini M. Cells and biomaterials in cartilage tissue engineering. Regen Med. 2009;4(1):81–98.

    Article  CAS  Google Scholar 

  5. Tanaka Y, Yamaoka H, Nishizawa S, Nagata S, Ogasawara T, Asawa Y, et al. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials. 2010;31:4506–16.

    Article  CAS  Google Scholar 

  6. Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A, et al. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop. 2009;33:821–8.

    Article  Google Scholar 

  7. Leung L, Perron J, Naguib HE. A study of the mechanics of porous PLGA 85-15 scaffold in compression. Polym Polym Compos. 2007;15(6):437–43.

    CAS  Google Scholar 

  8. Jell G, Verdejo R, Safinia L, Shaffer MS, Stevens MM, Bismarck A. Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. J Mater Chem. 2008;18:1865–72.

    Article  CAS  Google Scholar 

  9. Shin HJ, Lee CH, Cho IH, Kim Y-J, Lee Y-J, Kim IA, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polymer Edn. 2006;17(1–2):103–19.

    Article  CAS  Google Scholar 

  10. Martinez-Diaz S, Garcia-Giralt N, Lebourg M, Gómez-Tejedor J-A, Vila G, Caceres E, et al. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med. 2010;38:509–19.

    Article  Google Scholar 

  11. Lebourg M, Sabater Serra R, Más Estellés J, Hernández Sánchez F, Gómez Ribelles JL, Suay Antón J. Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. J Mater Sci Mater Med. 2008;19:2047–53.

    Article  CAS  Google Scholar 

  12. Woodfield TB, Malda J, De Wijn J, Peters F, Riesle J, Van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials. 2004;25:4149–61.

    Article  CAS  Google Scholar 

  13. Woodfield TB, Guggenheim M, Von Rechenberg B, Riesle J, Van Blitterswijk CA, Wedler V. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 2009;42(4):485–97.

    Article  CAS  Google Scholar 

  14. Reignier J, Huneault MA. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer. 2006;47:4703–17.

    Article  CAS  Google Scholar 

  15. Washburn NR, Simon CG, Tona A, Elgendy HM, Karim A, Amis EJ. Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology. J Biomed Mater Res. 2002;60(1):20–9.

    Article  CAS  Google Scholar 

  16. Sarazin P, Favis BD. Morphology control in co-continuous poly(L-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(L-lactide) materials. Biomacromolecules. 2003;4:1669–79.

    Article  CAS  Google Scholar 

  17. Yuan Z, Favis BD. Macroporous poly(l-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(l-lactide) blends. Biomaterials. 2004;25:2161–70.

    Article  CAS  Google Scholar 

  18. Sarazin P, Roy X, Favis BD. Controlled preparation and properties of porous poly(l-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials. 2004;25:5965–78.

    Article  CAS  Google Scholar 

  19. Sarazin P, Virgilio N, Favis BD. Influence of the porous morphology on the in vitro degradation and mechanical properties of poly(L-lactide) disks. J Appl Polym Sci. 2006;100(2):1039–47.

    Article  CAS  Google Scholar 

  20. Zhu YG, Li ZQ, Zhang D, Tanimoto T. Abs-iron nanocomposites prepared by cryomilling. J Appl Polym Sci. 2006;99:501–5.

    Article  CAS  Google Scholar 

  21. Zhu YG, Li ZQ, Gu JJ, Zhang D, Tanimoto T. Polyaniline-iron nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys. 2006;44:3157–64.

    Article  CAS  Google Scholar 

  22. Smith AP, Ade H, Koch CC, Spontak RJ. Solid-state blending of polymers by cryogenic mechanical alloying. In: Anastasiadis SH, Karim A, Ferguson GS, editors. Materials research society symposium 2000;629. p. FF691-6.

  23. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V. Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym. 2009;75:172–9.

    Article  CAS  Google Scholar 

  24. Chen Z, Wang Q. Pan-milling mixing—a novel approach to forming polymer blends and controlling their morphology. Polym Int. 2001;50(9):966–72.

    Article  CAS  Google Scholar 

  25. Masuda J, Torkelson JM. Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules. 2008;41:5974–7.

    Article  CAS  Google Scholar 

  26. Tao Y, Kim J, Torkelson JM. Achievement of quasi-nanostructured polymer blends by solid-state shear pulverization and compatibilization by gradient copolymer addition. Polymer. 2006;47:6773–81.

    Article  CAS  Google Scholar 

  27. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.

    Article  CAS  Google Scholar 

  28. Zhu YG, Li ZQ, Zhang D, Tanimoto T. PET-SiO2 nanocomposites prepared by cryomilling. J Polym Sci B Polym Phys. 2006;44:1161–7.

    Article  CAS  Google Scholar 

  29. Martin, JP. An investigation of the microstructure and properties of a cryogenically mechanically alloyed polycarbonate-poly(ether ether ketone) system [Dissertation]. Blacksburg (VA): Virginia Polytechnic Institute and State University; 2001. Available from URL: http://scholarlibvtedu/theses/available/etd-11292001-141959/.

  30. Smith AP, Spontak RJ, Ade H, Smith SD, Koch CC. High-energy cryogenic blending and compatibilizing of immiscible polymers. Adv Mater. 1999;11(15):1277–81.

    Article  CAS  Google Scholar 

  31. Wan Y, Wu H, Cao X, Siqin Dalai S. Compressive mechanical properties and biodegradability of porous poly(caprolactone)/chitosan scaffolds. Polym Degrad Stabil. 2008;93:1736–41.

    Article  CAS  Google Scholar 

  32. Eastmond GC. Poly(ε-caprolactone) Blends. In: Advances in Polymer Science: Biomedical Applications/Polymer Blends; 149. New York: Springer Berlin-Heidelberg; 2000, p. 59–223.

  33. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64:789–817.

    Article  CAS  Google Scholar 

  34. Terife G, Narh KA. Creating polymer-carbon nanotubes nanocomposites by cryomilling. ANTEC 2009 Plastics: Annual Technical Conference Proc. 2009;1:349–53.

  35. Sorrentino A, Gorrasi G, Tortora M, Vittoria V, Costantino U, Marmottini F, et al. Incorporation of Mg–Al hydrotalcite into a biodegradable Poly(ε-caprolactone) by high energy ball milling. Polymer. 2005;46:1601–8.

    Article  CAS  Google Scholar 

  36. Gross KA, Rodriguez-Lorenzo LM. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials. 2004;25:4955–62.

    Article  CAS  Google Scholar 

  37. Beskardes IG, Gümüsderelioglu M. Biomimetic apatite-coated PCL scaffolds: effect of surface nanotopography on cellular functions. J Bioact Compat Polym. 2009;24:507–24.

    Article  CAS  Google Scholar 

  38. Correlo VM, Boesel LF, Pinho E, Costa-Pinto AR, Alves da Silva ML, Bhattacharya M, et al. Melt-based compression-molded scaffolds from chitosan/polyester blends and composites: morphology and mechanical properties. J Biomed Mater Res A. 2009;91(2):489–504.

    CAS  Google Scholar 

  39. Varga F, Drzík M, Handl M, Chlpík J, Kos P, Filová E, et al. Biomechanical characterization of cartilages by a novel approach of blunt impact testing. Physiol Res. 2007;56(Suppl 1):S61–8.

    Google Scholar 

  40. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004;37:27–35.

    Article  Google Scholar 

  41. Menczel JD, Judovits L, Prime RB, Bair HE, Reading M, Swier S. Differential scanning calorimetry (DSC). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers: fundamentals and applications. New Jersey: Wiley; 2009. p. 7–239.

  42. Lebourg M, Anton JS, Gomez Ribelles JL. Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polym J. 2008;44:2207–18.

    Article  CAS  Google Scholar 

  43. Tracz A, Kucinska I, Jeszka JK. Unusual crystallization of polyethylene at melt/atomically flat interface: lamellar thickening growth under normal pressure. Polymer. 2006;47:7251–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Texas Tech University Imaging Center, Department of Biological Sciences at Texas Tech University for use of the Hitachi S-4300SE/N (NSF MRI 04-511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris V. Rivero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaf, R.M., Rivero, I.V. Fabrication and characterization of interconnected porous biodegradable poly(ε-caprolactone) load bearing scaffolds. J Mater Sci: Mater Med 22, 1843–1853 (2011). https://doi.org/10.1007/s10856-011-4367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4367-7

Keywords

Navigation