Skip to main content
Log in

Streptococcus sanguinis adhesion on titanium rough surfaces: effect of shot-blasting particles

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Dental implant failure is commonly associated to dental plaque formation. This problem starts with bacterial colonization on implant surface upon implantation. Early colonizers (such as Streptococcus sanguinis) play a key role on that process, because they attach directly to the surface and facilitate adhesion of later colonizers. Surface treatments have been focused to improve osseointegration, where shot-blasting is one of the most used. However the effects on bacterial adhesion on that sort of surfaces have not been elucidated at all. A methodological procedure to test bacterial adherence to titanium shot-blasted surfaces (alumina and silicon carbide) by quantifying bacterial detached cells per area unit, was performed. In parallel, the surface properties of samples (i.e., roughness and surface energy), were analyzed in order to assess the relationship between surface treatment and bacterial adhesion. Rather than roughness, surface energy correlated to physicochemical properties of shot-blasted particles appears as critical factors for S. sanguinis adherence to titanium surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eisenbarth E, Meyle J, Nachtigall W, Breme J. Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials. 1996;17:399–1403.

    Article  Google Scholar 

  2. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19:2219–32.

    Article  CAS  Google Scholar 

  3. Aparicio C, Gil FJ, Peraire C, Padròs A, Planell JA. Abstract Booklet Titanium, 99. 2000;2:1207–10.

    Google Scholar 

  4. Pegueroles M, Aparicio C, Bosio M, Engel E, Gil FJ, Planell JA, Altankov G. Spatial organization of osteoblast fibronectin matrix on titanium surfaces: effects of roughness, chemical heterogeneity and surface energy. Acta Biomater. 2009;6:291–301.

    Article  Google Scholar 

  5. Weiger R, Decker E-M, Krastl G, Brecx M. Deposition and retention of vital and dead Streptococcus sanguinis cells on glass surfaces in a flow-chamber system. Arch Oral Biol. 1999;44:621–8.

    Article  CAS  Google Scholar 

  6. Rickard A-H, Gilbert P, High N-J, Kolenbrander P, Handley P-S. Bacterial coaggregation an integral process in the development of multi-species biofilms. Trends Microbiol. 2003;11:94–100.

    Article  CAS  Google Scholar 

  7. Maeda K, Nagata H, Nonaka A, Kataoka K, Tanaka M, Shizukuishi S. Oral streptococcal glyceraldehydes-3phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis frimbria. Microbes Infect. 2004;6:1163–70.

    Article  CAS  Google Scholar 

  8. Norowski PA, Bumgardner JD. Review, Biomaterial and antibiotic strategies for Peri-implantitis. J Biomed Mater Res Part B Appl Biomater. 2009;88B:530–43.

    Article  CAS  Google Scholar 

  9. Teughels W, van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17:68–81.

    Article  Google Scholar 

  10. Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach F, Stiesch-Scholz M. Supra and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants. 2008;23:327–34.

    Google Scholar 

  11. Bürgers R, Gerlach T, Hanhel S, Schwartz F, Handel G. Gosau. In vitro and in vivo biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res. 2010;21:156–64.

    Article  Google Scholar 

  12. Mabboux F, Ponsonnet L, Morrier J-J, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials-an in vitro study. Colloids Surf B Biointerfaces. 2004;39:199–205.

    Article  CAS  Google Scholar 

  13. Sissons CH. Artificial dental plaque biofilm model system. Adv Dent Res. 1997;11:110–26.

    Article  CAS  Google Scholar 

  14. Steinberg D, Sela M, Klinger A, Kohavi D. Adhesion of periodontal bacteria to titanium and titanium alloy powders. Clin Oral Implants Res. 1998;9:67–72.

    Article  CAS  Google Scholar 

  15. Länge K, Herold M, Scheideler L, Geis-Gerstorfer J, Wendel HP, Gauglitz G. Investigation of initial pellicle formation on modified titanium dioxide (TiO2) surfaces by reflectometric interference spectroscopy (RIFS) in a model system. Dent Mater. 2004;20:814–22.

    Article  Google Scholar 

  16. Gerber J, Wenaweser D, Mayfield-Heitz L, Niklaus L, Persson G. Comparison of bacterial plaque samples from titanium and tooth surfaces by different methods. Clin Oral Implants Res. 2006;17:1–7.

    Article  Google Scholar 

  17. Fürst M, Salvi G, Lang N, Persson G. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implant Res. 2007;18:501–8.

    Article  Google Scholar 

  18. Hauser-Gerspach I, Kulik E-M, Weiger R, Decker E-M, Von Ohle C, Meyer J. Adhesion of Streptococcus sanguinis to dental implant and restorative materials in vitro. Dent Mater J. 2007;26:361–6.

    Article  CAS  Google Scholar 

  19. Schenkels L, Veerman E, Amerongen A. Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med. 1995;6:161–75.

    Article  CAS  Google Scholar 

  20. Stokes J, Davies G. Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology. 2007;44:141–60.

    CAS  Google Scholar 

  21. Cassie BD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–51.

    Article  CAS  Google Scholar 

  22. Wenzel R. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988–94.

    Article  CAS  Google Scholar 

  23. Owens D, Wendt R. Estimation of the surface energy of polymers. J Appl Polym Sci. 1969;13:1741–7.

    Article  CAS  Google Scholar 

  24. Sharma P, Hanumantha R. Analysis of different approaches foe evaluation of surface energy of microbial cells by contact angle goniometry. Adv Colloid Interfaces Sci. 2002;98:341–463.

    Article  CAS  Google Scholar 

  25. Pareta R, Reising A, Miller T, Storey D, Webster T. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications. Biotechnol Bioeng. 2009;103:459–71.

    Article  CAS  Google Scholar 

  26. Bellon-Fontaine M-N, Rault J, van Oss CJ. Microbial adhesion to solvents: a novel method to determine the electron donor/electron acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces. 1996;7:47–53.

    Article  CAS  Google Scholar 

  27. Quirynen M, van de Mei H, Bollen C, Schotte A, Marechal M, Doornbusch G, Naert I, Busscher H, van Steenberghe D. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res. 1993;72:1304–9.

    Article  CAS  Google Scholar 

  28. Größner-Schreiber B, Griepentrog M, Haustein I, Müller W, Lange K, Briedigkeit H, Göbel U. Plaque formation on surfaces modified dental implants, an in vitro study. Clin Oral Implant Res. 2001;12:543–51.

    Article  Google Scholar 

  29. Poortinga A, Bos R, Busscher H. Charge transfer during staphylococcal adhesion to TiNOX® coatings with different specific resistivity. Biophys Chem. 2001;91:273–9.

    Article  CAS  Google Scholar 

  30. Madar R. Silicon carbide in contention. Nature. 2004;430:974–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rodriguez-Hernández appreciates the financial support from CONACYT-México (Consejo Nacional de Ciencia y Tecnología). This study was supported by MICINN (Ministerio de Ciencia e Innovación) from Spanish Government, project: MAT2009-13547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana G. Rodríguez-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Hernández, A.G., Juárez, A., Engel, E. et al. Streptococcus sanguinis adhesion on titanium rough surfaces: effect of shot-blasting particles. J Mater Sci: Mater Med 22, 1913–1922 (2011). https://doi.org/10.1007/s10856-011-4366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4366-8

Keywords

Navigation