Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering

  • A. Timnak
  • F. Yousefi Gharebaghi
  • R. Pajoum Shariati
  • S. H. Bahrami
  • S. Javadian
  • Sh. Hojjati Emami
  • M. A. Shokrgozar
Article

Abstract

Nerve tissue engineering is one of the most promising methods in nerve tissue regeneration. The development of blended collagen and glycosaminoglycan scaffolds can potentially be used in many soft tissue engineering applications. In this study an attempt was made to develop two types of random and aligned electrospun, nanofibrous scaffold using collagen and a common type of glycosaminoglycan. Ion chromatography test, MTT and attachment assays were conducted respectively to trace the release of glycosaminoglycan, and to investigate the biocompatibility of the scaffold. Cell cultural tests showed that the scaffold acted as a positive factor to support connective tissue cell outgrowth. The positive effect of fiber orientation on cell outgrowth organization was traced through SEM images. Porosity percentage calculation and tensile strength measurement of the webs specified analogous properties to the native neural matrix tissue. These results suggested that nanostructured porous collagen-glycosaminoglycan scaffold is a potential cell carrier in nerve tissue engineering.

References

  1. 1.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.CrossRefGoogle Scholar
  2. 2.
    Shaoping Z, Wee ET, Xiao Z, Beuerman RW, Seeram R, Lin Yue LY. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A. 2006;79(3):456–63.Google Scholar
  3. 3.
    Shaoping Z, Wee ET, Xiao Z, Roger B, Seeram R, Lin Yue LY. Formation of collagen–glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules. 2005;6:2998–3004.CrossRefGoogle Scholar
  4. 4.
    Shaoping Z, Wee ET, Xiao Z, Roger B, Seeram R, Lin Yue LY. Development of a novel collagen–GAG nanofibrous scaffold via electrospinning. Mater Sci Eng. 2007;27(C):262–6.Google Scholar
  5. 5.
    Fratzl P. Collagen: structure and mechanics. New York: Springer; 2008.Google Scholar
  6. 6.
    Moghe AK. Core-sheath differentially biodegradable nanofiber structures for tissue engineering. A Dissertation submitted to the Graduate Faculty of North Carolina State University, Raleigh; 2008.Google Scholar
  7. 7.
    Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL. Electrospinning polydioxanone for biomedical applications. Acta Biomater. 2005;1:115–23.CrossRefGoogle Scholar
  8. 8.
    Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J Biomed Mater Res. 2004;69(A):314–22.CrossRefGoogle Scholar
  9. 9.
    Vance RJ, Miller DC, Thapa A, Habersroth KM, Webster TJ. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane and polycaprolactone. Biomaterials. 2004;25:2095–103.CrossRefGoogle Scholar
  10. 10.
    Mei-Chin C, Hsiang-Fa L, Ya-Ling C, Yen C, Hao-Ji W, Hsing-Wen S. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release. 2005;108:178–89.CrossRefGoogle Scholar
  11. 11.
    Bai-Shuan L, Chun-Hsu Y, Shan-Hui H. A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration. J Biomater Appl. 2004;19:21–34.CrossRefGoogle Scholar
  12. 12.
    Yueh-Sheng C, Ju-Ying C, Chun-Yuan C, Fuu-Jen T, Chun-Hsu Y, Bai-Shuan L. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 2005;26:3911–8.CrossRefGoogle Scholar
  13. 13.
    Sung H-W, Liang H-C. Acellular biological material chemically treated with genipin. United States Patent 6,545,042, 2003.Google Scholar
  14. 14.
    Gee AO, Baker BM, Mauck RL. Mechanics and cytocompatibily of genipin crosslinked type I collagen nanofibrous scaffolds. Summer Bioengineering Conference (SBC2008), 25–29 Jun, Marriott Resort, Marco Island, USA.Google Scholar
  15. 15.
    Lien S-M, Li W-T, Huang T-J. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater Sci Eng. 2008;28(C):36–43.Google Scholar
  16. 16.
    Sundararaghavan HG, Monteiro GA, Lapin NA, Chabal YJ, Miksan JR, Shreiber DI. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence. J Biomed Mater Res A. 2008;87(2):308–20.Google Scholar
  17. 17.
    Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng. 2009;102:632–43.CrossRefGoogle Scholar
  18. 18.
    Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/collagen blends as bone tissue scaffolds. Polymer. 2009;50:3778–85.CrossRefGoogle Scholar
  19. 19.
    Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials. 2006;27:3136–46.CrossRefGoogle Scholar
  20. 20.
    Adams JC. Methods in cell biology: methods in cell–matrix adhesion. San Diego: Elsevier Science; 2002.Google Scholar
  21. 21.
    Dumont CE, Walter B. Stimulation of neurite outgrowth in a human nerve scaffold designed for peripheral nerve reconstruction. J Biomed Mater Res B. 2005;37B(1):194–202.Google Scholar
  22. 22.
    Mollers S, Heschel I, Olde Damink L, Schugner F, Deumens R, Muller B, Bozkurt A, Gerardo Nava J, Noth J, Brook G. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng A. 2009;15:461–72.CrossRefGoogle Scholar
  23. 23.
    Kenawy E, Layman J, Watkins J, Bowlin G, Matthews J, Simpson D, Wnek G. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials. 2003;24:907–13.CrossRefGoogle Scholar
  24. 24.
    Shenoy S, Bates W, Frisch H, Wnek G. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer polymer interaction limit. Polymer. 2005;46:3372–84.CrossRefGoogle Scholar
  25. 25.
    Koski A, Tim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58:493–7.CrossRefGoogle Scholar
  26. 26.
    Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J. 2005;41:409–21.CrossRefGoogle Scholar
  27. 27.
    Shin Y, Hohman M, Brenner M, Rutledge G. Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett. 2001;78:1149–51.CrossRefGoogle Scholar
  28. 28.
    Deitzel J, Kleinmeyer J, Harris D, Beck Tan N. The effect of processing variables on the morphology of elecrospun nanofibers and textiles. Polymer. 2001;42:261–72.CrossRefGoogle Scholar
  29. 29.
    Yarin A, Koombhongse S, Reneker D. Bending instability in electrospinning of nanofibers. J Appl Phys. 2001;89:3018–26.CrossRefGoogle Scholar
  30. 30.
    Hohman M, Shin Y, Rutledge G, Brenner M. Electrospinning, electrically forced jets. II. Applications. Phys Fluids. 2001;13:2221–36.CrossRefGoogle Scholar
  31. 31.
    Reneker D, Yarin A, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87:4531–47.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Timnak
    • 1
  • F. Yousefi Gharebaghi
    • 1
  • R. Pajoum Shariati
    • 2
  • S. H. Bahrami
    • 3
  • S. Javadian
    • 4
  • Sh. Hojjati Emami
    • 1
  • M. A. Shokrgozar
    • 5
  1. 1.Faculty of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of Chemical EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Faculty of Textile EngineeringAmirkabir University of TechnologyTehranIran
  4. 4.Department of BiochemistryPasteur Institute of IranTehranIran
  5. 5.National Cell Bank of IranPasteur Institute of IranTehranIran

Personalised recommendations