Skip to main content
Log in

Two steps bulk-surface functionalization of nanoporous alumina by methyl and vinyl-silane adsorption. Evidence for oxide surface highly reactive sites creation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Functionalization of a novel nanoporous monolithic alumina synthesized from amalgam is investigated. The structure is studied by X-ray diffraction, BET, MEB and IR spectroscopy, before and after chemical functionalization by trimethylethoxy silane adsorption and annealing at high temperature. These treatments retain both monolith microstructure and nanostructure while strongly improving material mechanical properties. Allyldimethoxysilane and alcohol adsorption on the annealed samples, proves that highly reactive sites are available for further polymer grafting, as demonstrated by a significant shift of allyldimethoxysilane νSiH to 2,215 cm−1 and adsorbed acetate formation. Simple quantum computations on model systems support this conclusion. Chemical processes reported in this paper, allow a nanostructured alumina monoliths functionalization to optimize ceramics-polymer bonds, and to tune new hybrid biomaterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kirchner A, MacKenzie KJD, Brown IWM, Kemmitt T, Bowden ME. Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process. J Membr Sci. 2007;287:264–70.

    Article  CAS  Google Scholar 

  2. Vansant EF, Cool P. Chemical modifications of oxide surfaces. Colloid Surf A. 2001;179:145–50.

    Article  CAS  Google Scholar 

  3. Tilley TD. Molecular design and synthesis of heterogeneous and single-site supported catalysts. J Mol Cat A Chem. 2002;182–183:17–24.

    Article  Google Scholar 

  4. Shin E-J, Miser DE, Chan WG, Hajaligol MR. Catalytic cracking of catechols and hydroquinones in the presence of nano-particle iron oxide. Appl Cat B Environ. 2005;61:79–89.

    Article  CAS  Google Scholar 

  5. Zhang Z, Hicks RW, Pauly TR, Pinnavaia TJ. Mesostructured forms of gamma alumina. J Am Chem Soc. 2002;124:1592–3.

    Article  CAS  Google Scholar 

  6. Shi Q, Liang H, Feng D, Wang J, Stucky GD. Porous carbon and carbon/metal oxide microbers with well-controlled pore structure and interface. J Am Chem Soc. 2008;130:5034–5.

    Article  CAS  Google Scholar 

  7. Flammea KEL, Popatb KC, Leonic L, Markiewiczc E, Tempad TJL, Romanc BB, Grimesd CA, Desaia TA. Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials. 2007;28:2638–45.

    Article  Google Scholar 

  8. Popat KC, Swana EE, Mukhatyara V, Chatvanichkul K-I, Mor GK, Grimes CA, Desai TA. Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials. 2005;26:4516–22.

    Article  CAS  Google Scholar 

  9. Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci. 2002;500:28–60.

    Article  CAS  Google Scholar 

  10. Jones FH. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep. 2001;42:75–205.

    Article  CAS  Google Scholar 

  11. Greil PJ. Biomorphous ceramics from lignocellulosics. Eur Ceram Soc. 2001;21:105–18.

    Article  CAS  Google Scholar 

  12. Ignjatovic N, Uskokovic D, Mihailova K.Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci. 2004;238:314–19.

    Article  CAS  Google Scholar 

  13. Advinculaa MC, Rahemtullaa FG, Advinculac RC, Adae ET, Lemonsa JE, Bellisa SL. Osteoblast adhesion and matrix mineralization on solgel-derived titanium oxide. Biomaterials. 2006;27:2201–12.

    Article  Google Scholar 

  14. Qi X, Osterloh FE. Chemical sensing with LiMo3Se3 nanowire films. J Am Chem Soc. 2005;127:7666–7.

    Article  CAS  Google Scholar 

  15. Dillon A, Mahan A, Deshpande R, Alleman J, Blackburn J, Parillia P, Heben M, Engtrakul C, Gilbert K, Jones K, To R, Lee S-H, Lehman J. Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications. Thin Solid Films. 2006;501:216–20.

    Article  CAS  Google Scholar 

  16. Ionescu R, Espinosa E, Leghrib R, Felten A, Pireaux J, Erni R, Tendeloo GV, Bittencourt C, Canellas N, Llobet E. Novel hybrid materials for gas sensing applications made of metal-decorated MWCNTs dispersed on nano-particle metal oxides. Sens Actuators B Chem. 2008;131:174–82.

    Article  Google Scholar 

  17. Gole JL, Lewis SE. Porous silicon and sensors and future applications. Nanosilicon 2008;4:149–75.

    Article  Google Scholar 

  18. Long JW, Logan MS, Rhodes CP, Carpenter EE, Stroud RM, Rolison DR. Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J Am Chem Soc. 2004;126:16879–89.

    Article  CAS  Google Scholar 

  19. Schultz FS, Anderson MA. Effects of surface adsorption and confinement on the photochemical selectivity of previtamin D3 adsorbed within porous sol-gel derived alumina. J Am Chem Soc. 1999;121:4933–40.

    Article  CAS  Google Scholar 

  20. Vignes JL, Mazerolles L, Michel D. A novel method for preparing porous alumina objects. Key Eng Mater. 1997;132:432–5.

    Article  Google Scholar 

  21. Pluedemann EP. Silane coupling agents. New York: Plenum Press; 1991.

    Google Scholar 

  22. Hair ML. Infrared spectroscopy in surface chemistry. London: Edward Arnold Publishers Ltd.; 1967.

    Google Scholar 

  23. Peri JB. A model for the surface of gamma alumina. J Phys Chem. 1965;69:220–30.

    Article  CAS  Google Scholar 

  24. Knozinger H, Ratnasamy P. Catalytic aluminas: surface models and characterization of surface sites. Catal Rev. Sci Eng. 1978;17:31–70.

    Article  Google Scholar 

  25. Tsyganenko AA, Mardilovich PP. Structure of alumina surfaces. J Chem Soc Faraday Trans. 1996;92:4843–52.

    Article  CAS  Google Scholar 

  26. Morterra C. Proceedings of the 6th international Congress on catalysis, London 1976; 194.

  27. Busca G, Lorenzelli V, Sanchez-Escribano V, Guidetti R. FT-IR study of the surface properties of the spinels NiAl2O4 and CoAl2O4 in relation to those of transitional aluminas. J Catal. 1991;131:167–77.

    Article  CAS  Google Scholar 

  28. Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today. 1996;27:497–532.

    Article  CAS  Google Scholar 

  29. Wislicenus H. Versuche zur Gerbstoffbestimmung ohne Hautpulver. Z Angew Chem. 1904;25:801–10.

    Article  Google Scholar 

  30. Bennett J, Pinnel MJ. Reactions between mercury-wetted aluminium and liquid water. Mater Sci. 1973;8:1189–93.

    Article  CAS  Google Scholar 

  31. Zhou RS, Snyder RL. Structures and transformation mechanisms of transition aluminas. Acta Crystallogr B Struct Sci. 1991;47:617–30.

    Article  Google Scholar 

  32. Van Santen RA. Theoretical heterogeneous catalysis. Singapore: World Scientific Publishing; 1991.

    Google Scholar 

  33. Flanigen EM, Khatami H, Syzmanski HA. Molecular sieve zeolites. Adv Chem Ser. 1971;16:201–28.

    Google Scholar 

  34. Aronne A, Esposito S, Pernice P. FTIR and DTA study of lanthanum aluminosilicate glasses. Mater Chem Phys. 1997;51:163–8.

    Article  CAS  Google Scholar 

  35. Aronne A, Esposito S, Ferone C, Pansini M, Pernice P. FTIR study of the thermal transformation of barium-exchanged zeolite A to celsian. J Mater Chem. 2002;12:3039–45.

    Article  CAS  Google Scholar 

  36. Sitarz M, Mozgawa W, Handke M. Rings in the structure of silicate glasses. J Mol Struct. 1999;511:281–5.

    Article  Google Scholar 

  37. Lutz W, Ruscher C, Heidemann, D. Determination of the framework and non-framework SiO2 and AlO2 species of steamed and leached faujasite type zeolites: calibration of IR, NMR, and XRD data by chemical methods. Microporous Mesoporous Mater. 2002;55:193–202.

    Article  CAS  Google Scholar 

  38. Wang S, Dou T, Li Y, Zhang Y, Li X, Yan Z. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite. J Solid State Chem. 2004;177:4800–5.

    Article  CAS  Google Scholar 

  39. Davydov AA. Infrared spectroscopy of adsorbed species on the surface of transition metal oxides. Chichester: Wiley; 1990.

    Google Scholar 

  40. Lamotte J, Moravek V, Bensitel M, Lavalley J. FT-IR study of the structure and reactivity of methoxy species on ThO2 and CeO2. React Kinet Catal Lett. 1988;36:113–18.

    Article  CAS  Google Scholar 

  41. Jayasooriya UA, Anson C, Al-Joder O, dAlfonso G, Stanghellini P, Rossetti R. Vibrational assignments for methoxy ligands on metal clusters: interpretation of RAIRS data from methoxy groups on single crystal copper surfaces. Surf Sci. 1993;294:131–40.

    Article  CAS  Google Scholar 

  42. Dastoor H, Gardner P, King D. Identification of two tilted adsorbed methoxy species on Ni(110) using RAIRS. Chem Phys Lett. 1993;209:493–8.

    Article  CAS  Google Scholar 

  43. Montagne X, Lynch J, Freund E, Lamotte J, Lavalley J. A study of the adsorption sites on thoria by scanning transmission electron microscopy and Fourier-transform infrared spectroscopy. Adsorption and desorption of water and methanol. J Chem Soc Faraday Trans I. 1987;83:1417–25.

    Article  CAS  Google Scholar 

  44. Nakamoto K. Infrared spectra of inorganic and coordination compounds. New York: Wiley; 1970.

    Google Scholar 

  45. Dyan A, Cenedese P, Dubot P. Physical properties of gamma alumina surface hydroxyls revisited through a large scale periodic quantum-chemistry approach. J Phys Chem B. 2006;20:10041–50.

    Article  Google Scholar 

  46. Dubot P, Cndse P. Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Phys Rev B. 2001;63:241402(1)–(4).

    Article  Google Scholar 

  47. Hoffmann R. Solids and surfaces. A chemists view of bonding in extended structures. New York: VHC Publishers, Inc.; 1988.

    Google Scholar 

  48. Little L. Infrared spectra of adsorbed species. London: Academic Press Inc.; 1966.

    Google Scholar 

  49. Barr TL. Recent advances in x-ray photoelectron spectroscopy studies of oxides. J Vac Sci Technol A. 1991;9:1793–806.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Dubot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, C., Cenedese, P. & Dubot, P. Two steps bulk-surface functionalization of nanoporous alumina by methyl and vinyl-silane adsorption. Evidence for oxide surface highly reactive sites creation. J Mater Sci: Mater Med 22, 1161–1169 (2011). https://doi.org/10.1007/s10856-011-4286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4286-7

Keywords

Navigation