Skip to main content
Log in

Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effects of solid state synthesis process parameters and primary calcium precursor on the cement-type hydration efficiency (at 37°C) of α-tricalcium phosphate (Ca3(PO4)2 or α-TCP) into hydroxyapatite (Ca10−xHPO4(PO4)6−x(OH)2−x x = 0–1, or HAp) have been investigated. α-TCP was synthesized by firing of stoichiometric amount of calcium carbonate (CaCO3) and monetite (CaHPO4) at 1150–1350°C for 2 h. Three commercial grade CaCO3 powders of different purity were used as the starting material and the resultant α-TCP products for all synthesis routes were compared in terms of the material properties and the reactivity. The reactant CaHPO4 was also custom synthesized from the respective CaCO3 source. A low firing temperature in the range of 1150–1350°C promoted formation of β-polymorph as a second phase in the resultant TCP. Meanwhile, higher firing temperatures resulted in phase pure α-TCP with poor hydraulic reactivity. The extension of firing operation also led to a decrease in the reactivity. It was found that identical synthesis history, morphology, particle size and crystallinity match between the α-TCPs produced from different CaCO3 sources do not essentially culminate in products exhibiting similar hydraulic reactivity. The changes in reactivity are arising from differences in the trace amount of impurities found in the CaCO3 precursors. In this regard, a correlation between the observed hydraulic reactivities and the impurity content of the CaCO3 powders—as determined by inductively coupled plasma mass spectrometry—has been established. A high level of magnesium impurity in the CaCO3 almost completely hampers the hydration of α-TCP. This impurity also favors formation of β- instead of α-polymorph in the product of TCP upon firing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Driessens FCM, Planell JA, Boltong MG, Khairoun I, Ginebra MP. Osteotransductive bone cements. Proc Instn Mech Eng. 1998;212:427–35.

    CAS  Google Scholar 

  2. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  3. Serbetci K, Hasirci N. Recent developments in bone cements. In: Yaszemski MJ, Trantolo DJ, Lewandrowski K, Hasirci V, Altobelli DE, Wise DL, editors. Biomaterials in orthopedics. New York: Marcel-Dekker Inc; 2004. p. 241–86.

    Google Scholar 

  4. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface. 2008;5:1137–58.

    Article  CAS  Google Scholar 

  5. Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today. 2010;13:24–30.

    Article  CAS  Google Scholar 

  6. Serbetci K, Korkusuz F, Hasirci N. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym Test. 2004;23:145–55.

    Article  CAS  Google Scholar 

  7. Endogan T, Serbetci K, Hasirci N. Effects of ingredients on thermal and mechanical properties of acrylic bone cements. J Appl Polym Sci. 2009;113:4077–84.

    Article  CAS  Google Scholar 

  8. Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, Ross J, Goldstein SA, Jupiter JB, Rosenthal DI. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267(5205):1796–9.

    Article  CAS  Google Scholar 

  9. Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J. 2001;10:205–13.

    Article  Google Scholar 

  10. Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007;16:601–10.

    Article  Google Scholar 

  11. Tenhuisen KS, Clark BA, Klimkiewicz M, Brown PW. A microstructural investigation of calcium hydroxyapatites synthesized from CaHPO4·2H2O and Ca4(PO4)2O. Cells Mater. 1996;6:251–67.

    CAS  Google Scholar 

  12. Brown PW, Hocker N, Hoyle S. Variations in solution chemistry during the low-temperature formation of hydroxyapatite. J Am Ceram Soc. 1991;74:1848–54.

    Article  CAS  Google Scholar 

  13. Yamada M, Shiota M, Yamashita Y, Kasugai S. Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of α- and β- tricalcium phosphate in block grafts. J Biomed Mater Res B Appl Biomater. 2007;82B:139–48.

    Article  CAS  Google Scholar 

  14. Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41:731–8.

    Article  Google Scholar 

  15. Durucan C, Brown PW. Reactivity of α-tricalcium phosphate. J Mater Sci. 2002;37:963–9.

    Article  CAS  Google Scholar 

  16. Ginebra MP, Fernández E, Driessens FCM, Planell JA. Modeling of the hydrolysis of α-tricalcium phosphate. J Am Ceram Soc. 1999;82:2808–12.

    Article  CAS  Google Scholar 

  17. Durucan C, Brown PW. Kinetic model for α-tricalcium phosphate hydrolysis. J Am Ceram Soc. 2002;85:2013–8.

    Article  CAS  Google Scholar 

  18. Brunner TJ, Bohner M, Dora C, Gerber C, Stark WJ. Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J Biomed Mater Res B Appl Biomater. 2007;83B:400–7.

    Article  CAS  Google Scholar 

  19. Camire CL, Gbureck U, Hirsiger W, Bohner M. Correlating crystallinity and reactivity in an α-tricalcium phosphate. Biomaterials. 2005;26:2787–94.

    Article  CAS  Google Scholar 

  20. Brunner TJ, Grass RN, Bohner M, Stark WJ. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem. 2007;17:4072–8.

    Article  CAS  Google Scholar 

  21. Ginebra MP, Driessens FCM, Planell JA. Effect of particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials. 2004;25:3453–62.

    Article  CAS  Google Scholar 

  22. Bohner M, Brunner TJ, Stark WJ. Controlling the reactivity of calcium phosphate cements. J Mater Chem. 2008;18:5669–75.

    Article  CAS  Google Scholar 

  23. Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25:2893–9.

    Article  CAS  Google Scholar 

  24. Leroux L, Hatim Z, Frèche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25:31–4.

    Article  Google Scholar 

  25. Rau JV, Generosi A, Smirnov VV, Ferro D, Rossi Albertini V, Barinov SM. Energy dispersive X-ray diffraction study of phase development during hardening of calcium phosphate bone cements with addition of chitosan. Acta Biomater. 2008;4:1089–94.

    Article  CAS  Google Scholar 

  26. Saint-Jean SJ, Camire CL, Nevsten P, Hansen S, Ginebra MP. Study of the reactivity and in vitro bioactivity of Sr-substituted α-TCP cements. J Mater Sci Mater Med. 2005;16:993–1001.

    Article  CAS  Google Scholar 

  27. Boanini E, Panzavolta S, Rubini K, Gandolfi M, Bigi A. Effect of strontium and gelatin on the reactivity of α-tricalcium phosphate. Acta Biomater. 2010;6:936–42.

    Article  CAS  Google Scholar 

  28. Pina S, Torres PM, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Newly developed Sr-substituted α-TCP bone cements. Acta Biomater. 2010;6:928–35.

    Article  CAS  Google Scholar 

  29. Yashima M, Kawaike Y. Crystal structure and site preference of Ba-doped α-Tricalcium phosphate (Ca1−xBax)3(PO4)2 through High-Resolution Synchrotron Powder Diffraction (x = 0.05 to 0.15). Chem Mater. 2007;19:3973–9.

    Article  CAS  Google Scholar 

  30. Fernández E, Vlad MD, Hamcerencu M, Darie A, Torres R, López J. Effect of iron on the setting properties of α-TCP bone cements. J Mater Sci. 2005;40:3677–82.

    Article  Google Scholar 

  31. Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials. 2001;22:2981–92.

    Article  CAS  Google Scholar 

  32. Yin X, Calderin L, Stott MJ, Sayer M. Density functional study of structural, electronic and vibrational properties of Mg- and Zn-doped tricalcium phosphate biomaterials. Biomaterials. 2002;23:4155–63.

    Article  CAS  Google Scholar 

  33. Enderle R, Gotz-Neunhoeffer F, Gobbels M, Muller FA, Greil P. Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials. 2005;26:3379–84.

    Article  CAS  Google Scholar 

  34. Pina S, Torres PMC, Ferreira JMF. Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements. J Mater Sci Mater Med. 2010;21:431–8.

    Article  CAS  Google Scholar 

  35. Kannan S, Ventura JMG, Lemos AF, Barba A, Ferreira JMF. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram Int. 2008;34:7–13.

    Article  CAS  Google Scholar 

  36. Matsumoto N, Yoshida K, Hashimoto K, Toda Y. Thermal stability of β-tricalcium phosphate doped with monovalent metal ions. Mater Res Bull. 2009;44:1889–94.

    Article  CAS  Google Scholar 

  37. Yubao L, Xingdong Z, de Groot K. Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials. 1997;18:737–41.

    Article  Google Scholar 

  38. Welch JH, Gutt W. High-temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc. 1961:4442–4.

  39. Kreidler ER, Hummel FA. Phase relationships in the system SrO-P2O5 and the influence of water vapor on the formation of Sr4P2O9. Inorg Chem. 1967;6:884–91.

    Article  CAS  Google Scholar 

  40. Kingery WD, Bowen HK, Uhlman DR. Introduction to Ceramics. 2nd ed. New York: Wiley; 1960. p. 363.

    Google Scholar 

  41. Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J Mater Sci Mater Med. 2008;19:2669–77.

    Article  CAS  Google Scholar 

  42. Dickens B, Schroeder LW, Brown WE. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J Solid State Chem. 1974;10:232–48.

    Article  CAS  Google Scholar 

  43. Schroeder LW, Dickens B, Brown WE. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2. J Solid State Chem. 1977;22:253–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by METU-BAP 07-02-2009-00-01 project. The authors thank to METU Central Laboratory for ICP-MS, BET analyses and Özlem Altıntaş Yıldırım for the SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Durucan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicek, G., Aksoy, E.A., Durucan, C. et al. Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity. J Mater Sci: Mater Med 22, 809–817 (2011). https://doi.org/10.1007/s10856-011-4283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4283-x

Keywords

Navigation