Skip to main content
Log in

Corrosion behaviour of heat treated boron free and boron containing Ti–13Zr–13Nb (wt%) alloy in simulated body fluid

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The corrosion behaviour of heat treated Ti–13Zr–13Nb (TZN) and Ti–13Zr–13Nb–0.5B (TZNB) alloys in Hank’s solution has been investigated. The microstructure of the heat treated TZN alloy consisted of α, β or martensite. Addition of boron to TZN alloy led to the formation of dispersed TiB particles and modification of microstructure. In general, the furnace cooled TZN sample showed lower corrosion potential (Ecorr) than the air cooled sample. Aging of water quenched samples decreased the Ecorr value. The passive current density of TZN samples varied within a narrow range. Presence of boron in TZN alloy decreased the corrosion potential and substantially increased the passive current density. Results showed that boron deteriorated the corrosion resistance of TZN alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. López MF, Gulirrez A, Jimnez JA. Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surf Sci. 2001;482–485:300–5.

    Article  Google Scholar 

  2. Mändl S, Rader R, Thorwarth G, Krause D, Zeilhofer HF, Horch HH, Rauschenbach B. Investigation on plasma immersion ion implantation treated medical implants. Biomol Eng. 2002;19:129–32.

    Article  Google Scholar 

  3. López MF, Jimnez JA, Gutiérrez A. Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim Acta. 2003;48:1395–401.

    Article  Google Scholar 

  4. Okazaki Y, Tateishi T, Ito Y. Corrosion resistance of implants alloys in pseudo physiological solution and role of alloying elements in passive films. Mater Trans JIM. 1997;38:78–84.

    CAS  Google Scholar 

  5. Leinenbach C, Eifler D. Fatigue and cycle deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials. 2006;27:1200–8.

    Article  CAS  Google Scholar 

  6. Geetha M, Mudali UK, Gogia AK, Asokamani R, Raj BD. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros Sci. 2004;46:877–92.

    Article  CAS  Google Scholar 

  7. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003;24:263–73.

    Article  CAS  Google Scholar 

  8. Okazaki Y, Rao S, Ito Y, Tateishi T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials. 1998;19:1197–215.

    Article  CAS  Google Scholar 

  9. Manivasagam G, Mudali UK, Asokamani R, Raj B. Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices. Corros Rev. 2003;21:125–59.

    CAS  Google Scholar 

  10. Yu SY, Scully JR. Corrosion and passivity of Ti–13%Nb–13%Zr in comparison to other biomedical implant alloys. Corrosion. 1997;53:965–76.

    Article  CAS  Google Scholar 

  11. Okazaki Y. A new Ti–15Zr–4Nb–Ta alloy for medical applications. Curr Opi Sol State Mat Sci. 2001;5:45–53.

    Article  CAS  Google Scholar 

  12. Khan MA, Williams RL, Williams DF. In vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117–26.

    Article  CAS  Google Scholar 

  13. Khan MA, Williams RL, Williams DF. The corrosion behaviour of Ti–6Al-4 V, Ti–6Al–7Nb and Ti–13Zr–13Nb in protein solutions. Biomaterials. 1999;20:631–7.

    Article  CAS  Google Scholar 

  14. Oliveira NTC, Ferreira EA, Duarte LT, Biaggio SR, Rocha-Filho RC, Bocchi N. Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Zr–13Nb alloys. Electrochim Acta. 2006;51:2068–75.

    Article  CAS  Google Scholar 

  15. Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24:213–8.

    Article  CAS  Google Scholar 

  16. Niinomi M, Kuroda D, Fukunaga KI, Morinaga M, Kato Y, Yashiro T, Suzuki A. Corrosion wear fracture of new β type biomedical titanium alloys. Mater Sci Eng A. 1999;263:193–9.

    Article  Google Scholar 

  17. Williams DF. Titanium for medical applications. In: Brunette DM, Tengvall P, Texfor M, Thomsen P, editors. Titanium in medicine. New York: Springer; 2001. p. 13–24.

    Google Scholar 

  18. Kobayashi E, Doi H, Yoneyama T, Hamanaka H, Gimson IR, Best SM, Shelton JC, Bonfield W. Influence of aging heat treatment on mechanical properties of biomedical Ti–Zr based ternary alloys containing niobium. J Mater Sci Mater Med. 1998;9:625–30.

    Article  CAS  Google Scholar 

  19. Samuel S, Nag S, Scharf TW, Banerjee R. Wear resistance of laser-deposited boride reinforced Ti–Nb–Zr–Ta alloy composites for orthopedic implants. Mater Sci Eng C. 2008;28:414–20.

    Article  CAS  Google Scholar 

  20. Zhang X, Lu W, Zhang D, Wu R. In situ technique for synthesizing (TiB + TiC)/Ti composites. Scripta Mater. 1999;41:39–46.

    Article  CAS  Google Scholar 

  21. Chen W, Boehlert CJ. The elevated-temperature fatigue behavior of boron-modified Ti–6Al-4 V (wt%) castings. Mater Sci Eng A. 2008;494:132–8.

    Article  Google Scholar 

  22. Majumdar P. PhD Thesis. IIT Kharagpur, India. 2009.

  23. Majumdar P, Singh SB, Chakraborty M. Wear response of heat-treated Ti–13Zr–13Nb alloy in dry condition and simulated body fluid. Wear. 2008;264:1015–25.

    Article  CAS  Google Scholar 

  24. Semlitsch MF, Weber H, Streicher RM, Schön R. Joint replacement components made of hot-forged and surface-treated Ti–6Al–7Nb alloy. Biomaterials. 1992;13:781–8.

    Article  CAS  Google Scholar 

  25. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  CAS  Google Scholar 

  26. Raman V, Tamilselvi S, Nanjundan S, Rajendran N. Electrochemical behaviour of titanium and titanium alloy in artificial saliva. Trends Biomater Artif Organs. 2005;18:137–40.

    Google Scholar 

  27. Wayman CM, Bhadeshia HKDH. Phase transformations, nondifusive. In: Cahn RW, Haasen P, editors. Physical metallurgy. Amsterdam: Elsevier Science Publishers; 1996. p. 1507–54.

    Chapter  Google Scholar 

  28. Ahmed T, Rack HJ. Martensitic transformations in Ti-(16–26 at%) Nb Alloys. J Mater Sci. 1996;31:4267–76.

    Article  CAS  Google Scholar 

  29. Bernard S, Covino Jr, Alman DE. Corrosion of titanium matrix composites, Report No.: DOE/ARC-2002-011, Albany Research Center, U.S. Department of Energy, Albany, OR USA.

  30. Tamirisakandala S, Bhat RB, Tiley JS, Miracle DB. Grain refinement of cast titanium alloys via trace boron addition. J Mater Eng Perform. 2005;53:1421–6.

    CAS  Google Scholar 

  31. Cherukuri B, Srinivasan R, Tamirisakandala S, Miracle DB. The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti–15Mo–2.6Nb–3Al–0.2Si. Scripta Mater. 2009;60:496–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, P., Singh, S.B., Chatterjee, U.K. et al. Corrosion behaviour of heat treated boron free and boron containing Ti–13Zr–13Nb (wt%) alloy in simulated body fluid. J Mater Sci: Mater Med 22, 797–807 (2011). https://doi.org/10.1007/s10856-011-4282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4282-y

Keywords

Navigation