Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. doi:10.1016/j.biotechadv.2008.09.002..
Article
CAS
Google Scholar
Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol Biol Med. 2007;3(1):95–101.
Article
CAS
Google Scholar
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–20. doi:10.1128/aem.02218-06.
Article
CAS
Google Scholar
Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18(28):285604.
Article
Google Scholar
Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103. doi:10.1088/0957-4484/18/22/225103.
Article
Google Scholar
Duran N, Marcarto PD, De Souza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 2007;3:203–8.
Article
CAS
Google Scholar
Egorova EM, Revina AA, Rostovshchikova TN, Kiseleva OI. Bactericidal and catalytic properties of stable metal nanoparticles in reverse micelles. Vestn Mosk Univ Ser 2 Khim. 2001;42(5):332–8.
CAS
Google Scholar
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–53. doi:10.1088/0957-4484/16/10/059.
Article
CAS
Google Scholar
Martínez-Castañón G, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–8.
Article
Google Scholar
Zhao GJ, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 1998;11(1):27–32.
Article
CAS
Google Scholar
Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, et al. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules. 2007;8(4):1246–54. doi:10.1021/bm060721b.
Article
CAS
Google Scholar
Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J. 2007;4(2):114–22. doi:10.1111/j.1742-481X.2007.00316.x.
Article
Google Scholar
Tang SC, Tang YF, Gao F, Liu ZG, Meng XK. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres. Nanotechnology. 2007;18(29):295607. doi:10.1088/0957-4484/18/29/295607.
Article
Google Scholar
Melnig V, Pohoata V, Obreja L, Garlea A, Cazacu M. Water-soluble polyamidhydroxyuretane swelling behaviour. J Optoelectron Adv Mater. 2006;8:1040–3.
CAS
Google Scholar
Obreja L, Dorohoi DH, Melnig V, Foca N, Nastuta A. Poly(amidehydroxyurethane) templated Fe3O4 and Ag nanoparticles galvanostatic assay synthesis. Mater Plast. 2008;3(45):261–4.
Google Scholar
Riddick TM. Control of colloid stability through zeta-potential. New York: Livingston Publishing Co; 1968.
Google Scholar
Lorian V. Antibiotics in laboratory medicine. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.
Google Scholar
Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18(17):6679–86.
Article
CAS
Google Scholar
Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51. doi:10.1007/s11051-010-9900-y.
Article
CAS
Google Scholar
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.
Article
CAS
Google Scholar
Cho K-H, Park J-E, Osaka T, Park S-G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005;51(5):956–60.
Article
CAS
Google Scholar
Tortora J, Case CL, Funke BR. Microbiology: an introduction. 7th ed. San Francisco: Benjamin Cummings; 2002.
Google Scholar
Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, et al. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control. 2004;32(8):445–50. doi:10.1016/S0196655304004742.
Article
Google Scholar
Panácek A, Kolár M, Vecerová R, Prucek R, Soukupová J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30(31):6333–40.
Article
Google Scholar
Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5(4):916–24. doi:10.1021/Pr0504079.
Article
CAS
Google Scholar
Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21(21):9651–9. doi:10.1021/la0513306.
Article
CAS
Google Scholar
Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, et al. Antibacterial properties of silver-doped titania13. Small. 2007;3(5):799–803.
Article
CAS
Google Scholar
Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 2008;112(15):5825–34. doi:10.1021/jp711616v.
Article
CAS
Google Scholar
Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278–81. doi:10.1128/Aem.69.7.4278-4281.2003.
Article
CAS
Google Scholar
Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–9. doi:10.1093/toxsci/kfi256.
Article
CAS
Google Scholar