Skip to main content

Advertisement

Log in

Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25–82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31–82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients’ subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Honkonen SE. Indications for surgical treatment of tibial condyle fractures. Clin Orthop Relat Res. 1994;302:199–205.

    Google Scholar 

  2. Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res. 1993;292:87–100.

    Google Scholar 

  3. Waddell JP, Johnston DW. Fractures of the tibial plateau: a review of ninety-five patients and comparison of treatment methods. J Trauma. 1981;21(5):376–81.

    Article  CAS  Google Scholar 

  4. Cockin J. Autologous bone crafting-complications at the donor site. J Bone Joint Surg. 1971;53B(1):153.

    Google Scholar 

  5. Burri C, Bartzke G, Goldewey J, Muggler E. Fractures of the tibial plateau. Clin Orthop Relat Res. 1979;138:84–93.

    Google Scholar 

  6. Jupiter JB, Winters S, Sigman S, Lowe C, Pappas C, Ladd AL, Van Wagoner M, Smith ST. Repair of five distal radius fractures with an investigational cancellous bone cement: a preliminary report. J Orthop Trauma. 1997;11(2):110–6.

    Article  CAS  Google Scholar 

  7. Kopylov P, Runnqvist K, Jonsson K, Aspenberg P. Norian SRS versus external fixation in redisplaced distal radial fractures. A randomized study in 40 patients. Acta Orthop Scand. 1999;70(1):1–5.

    Article  CAS  Google Scholar 

  8. Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res. 1989;240:53–62.

    Google Scholar 

  9. Suzuki K, Kurabayashi H. Efficiency of hydroxyapatite-tricalcium phosphate-composite (HAP–TCP) for bone defect of tibia fracture—comparison between HAP–TCP and autogenous iliac bone. In: Andersson ÖH, Happonen RP, Yli-Urpo A, editors. Bioceramics, vol. 7. Oxford: Butterworth-Heinemann Ltd; 1994. p. 435–40.

    Google Scholar 

  10. Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD. Augmentation of femoral neck fracture fixation with an injectable calcium–phosphate bone mineral cement. J Orthop Res. 1996;14(5):786–93.

    Article  CAS  Google Scholar 

  11. Andersson ÖH, Liu G, Karlsson KH, Niemi L, Miettinen J, Juhanoja J. In vivo behaviour of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system. J Mater Sci Mater Med. 1990;1:219–27.

    Article  CAS  Google Scholar 

  12. Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mat Res Symp. 1971;N2(Part-1):117–43.

    Article  Google Scholar 

  13. Heikkilä JT, Aho HJ, Yli-Urpo A, Happonen RP, Aho AJ. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Acta Orthop Scand. 1995;66(5):463–7.

    Article  Google Scholar 

  14. Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 2006;27(17):3249–55.

    Article  CAS  Google Scholar 

  15. 15. Hench LL, Andersson ÖH. Bioactive glasses. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: Reed Healthcare Communications; 1993. pp. 41–62.

  16. Heikkilä JT, Aho AJ, Yli-Urpo A, Andersson OH, Aho HJ, Happonen RP. Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit. Acta Orthop Scand. 1993;64(6):678–82.

    Article  Google Scholar 

  17. Andersson ÖH, Liu G, Kangasniemi K, et al. Evaluation of the acceptance of glass in bone. J Mater Sci Mater Med. 1992;3:145–50.

    Article  CAS  Google Scholar 

  18. Lindfors NC, Hyvönen P, Nyyssönen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone. 2010;47:212–8.

    Article  CAS  Google Scholar 

  19. Turunen T, Peltola J, Yli-Urpo A, Happonen RP. Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin Oral Implant Res. 2004;15(2):135–41.

    Article  Google Scholar 

  20. Lindfors NC, Koski I, Heikkilä JT, Mattila K, Aho AJ. A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res Appl Biomater. 2010;94:157–64.

    Google Scholar 

  21. Jallot E, Benhayoune H, Kilian L, Irigaray JL, Barbotteau Y, Balossier G, Bonhomme P. Dissolution kinetics, selective leaching, and interfacial reactions of a bioglass coating enriched in alumina. J Colloid Interface Sci. 2001;233(1):83–90.

    Article  CAS  Google Scholar 

  22. Lindfors NC. Treatment of a recurrent aneurysmal bone cyst with bioactive glass in a child allows for good bone remodelling and growth. Bone. 2009;45(2):398–400.

    Article  CAS  Google Scholar 

  23. Stoor P, Söderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral micro organisms. Acta Odontol Scand. 1998;56(3):161–5.

    Article  CAS  Google Scholar 

  24. Peltola M, Suonpää J, Aitasalo K, Varpula M, Yli-Urpo A, Happonen RP. Obliteration of the frontal sinus cavity with bioactive glass. Head Neck. 1998;20(4):315–9.

    Article  CAS  Google Scholar 

  25. Aitasalo K, Suonpää J, Peltola M, et al. Behaviour of bioactive glass (S53P4) in human frontal sinus obliteration. In: Sedel L, Rey C, editors. Bioceramics, vol. 10. Cambridge: Elsevier Science Ltd; 1997. p. 429–32.

    Chapter  Google Scholar 

  26. Wilson J, Clark AE, Douek E, et al. Clinical applications of Bioglass implants. In: Andersson ÖH, Happonen RP, Yli-Urpo A, editors. Bioceramics, vol. 7. Oxford: Butterworth-Heinemann Ltd; 1994. p. 415–22.

    Google Scholar 

  27. Aho AJ, Suominen E, Alanen A, Yli-Urpo A, Knuuti J, Aho HJ. Remodelling of the tibia after grafting of a large cavity with particulate bioactive glass–hydroxylapatite-case report on treatment of fibrous dysplasia with 13 years follow-up. Acta Orthop Scand. 2003;74(6):766–70.

    Article  Google Scholar 

  28. Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ. Bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res Appl Biomater. 2009;90:131–6.

    Google Scholar 

  29. Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res. 1979;138:94–104.

    Google Scholar 

  30. Holzach P, Matter P, Minter J. Arthroscopically assisted treatment of lateral tibial plateau fractures in skiers: use of a cannulated reduction system. J Orthop Trauma. 1994;8(4):273–81.

    Article  CAS  Google Scholar 

  31. Asik M, Cetik O, Talu U, Sozen YV. Arthroscopy-assisted operative management of tibial plateau fractures. Knee Surg Sports Traumatol Arthrosc. 2002;10(6):364–70.

    Article  Google Scholar 

  32. Segur JM, Torner P, Garcia S, Combalia A, Ramon R. Use of bone allograft in tibial plateau fractures. Arch Orthop Trauma Surg. 1998;117(6-7):357–9.

    Article  CAS  Google Scholar 

  33. Lasanianos N, Mouzopoulos G, Garnavos C. The use of freeze-dried cancelous allograft in the management of impacted tibial plateau fractures. Injury. 2008;39(10):1106–12.

    Article  CAS  Google Scholar 

  34. Itokazu M, Matsunaga T, Ishii M, Kusakabe H, Wyni Y. Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop Trauma Surg. 1996;115(1):45–8.

    Article  CAS  Google Scholar 

  35. Lobenhoffer P, Gerich T, Witte F, Tscherne H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma. 2002;16(3):143–9.

    Article  CAS  Google Scholar 

  36. Trenholm A, Landry S, McLaughlin K, Deluzio KJ, Leighton J, Trask K, Leighton RK. Comparative fixation of tibial plateau fractures using alpha-BSM, a calcium phosphate cement, versus cancellous bone graft. J Orthop Trauma. 2005;19(10):698–702.

    Article  Google Scholar 

  37. Horstmann WG, Verheyen CC, Leemans R. An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury. 2003;34(2):141–4.

    Article  CAS  Google Scholar 

  38. Simpson D, Keating JF. Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury. 2004;35(9):913–8.

    Article  CAS  Google Scholar 

  39. Welch RD, Zhang H, Bronson DG. Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J Bone Joint Surg Am. 2003;85-A(2):222–31.

    Google Scholar 

  40. Russell TA, Leighton RK. Alpha-BSM Tibial Plateau Fracture Study Group. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am. 2008;90(10):2057–61.

    Article  Google Scholar 

  41. Aho AJ, Heikkilä JT. Bone substitutes and related materials in clinical orthopaedics. In: Phillips GO, von Versen R, editors. Advances in Tissue Banking, vol. 1. Singapore: World Scientific; 1997. p. 73–108.

    Google Scholar 

  42. Chan PS, Klimkiewicz JJ, Luchetti WT, Esterhai JL, Kneeland JB, Dalinka MK, Heppenstall RB. Impact of CT scan on treatment plan and fracture classification of tibial plateau fractures. J Orthop Trauma. 1997;11(7):484–9.

    Article  CAS  Google Scholar 

  43. Morii T, Koshino T, Odaka T, et al. Roentgenological and histological observations of bone reaction of glass–ceramic beads in tibial metaphysis and fibular diaphysis of man. In: Vincenzini P, editor. Ceramics in Clinical Applications. Amsterdam: Elsevier; 1987. p. 361–8.

    Google Scholar 

Download references

Acknowledgments

Sincere thanks to Biostatistician Hans Helenius, MSc., Head of the Department of Biostatistics, University of Turku, for his valuable help in organizing the statistical analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Kukkonen.

Additional information

Paper selected for publication from the 23rd European Conference on Biomaterials, Tampere, Finland, September 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkilä, J.T., Kukkonen, J., Aho, A.J. et al. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study. J Mater Sci: Mater Med 22, 1073–1080 (2011). https://doi.org/10.1007/s10856-011-4272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4272-0

Keywords

Navigation