Skip to main content

Advertisement

Log in

Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Poly (methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization with dodecylamine used as MMT-modifier. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structures of the nanocomposites. Cytotoxicity test, hemolysis test, acute systemic toxicity test, oral mucous membrane irritation test, guinea-pig maximization test and mouse bone-marrow micronucleus test were used to evaluate the biocompatibility of PMMA/MMT nanocomposites. The results indicated that an exfoliated nanocomposite was achieved, and the resulting nanocomposites exhibited excellent biocompatibility as denture base material and had potential application in dental materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J Polym Sci Part A Polym Chem. 1993;31:983–6.

    Article  CAS  Google Scholar 

  2. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP. New polymer electrolyte nanocomposites: melt intercalation of poly (ethylene oxide) in mica-type silicates. Adv Mater. 1995;7:154–6.

    Article  CAS  Google Scholar 

  3. Kawasumi M, Hasegawa N, Kato M, Okada A. Preparation and mechanical-properties of polypropylene-clay hybrids. Macromolecules. 1997;30:6333–8.

    Article  CAS  Google Scholar 

  4. Khaled SM, Sui RH, Charpentier PA, Rizkalla AS. Synthesis of TiO2-PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir. 2007;23:3988–95.

    Article  CAS  Google Scholar 

  5. Shen Z, Simon GP, Cheng Y. Nanocomposites of poly(methyl methacrylate) and organically modified layered silicates by melt intercalation. J Appl Polym Sci. 2004;92:2101–15.

    Article  CAS  Google Scholar 

  6. Chen GH, Chen XQ, Lin ZY, Ye W, Yao KD. Preparation and properties of PMMA/clay nanocomposite. J Mater Sci Lett. 1999;18:1761–3.

    Article  CAS  Google Scholar 

  7. Lee DC, Jang LW. Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization. J Appl Polym Sci. 1996;61:1117–22.

    Article  CAS  Google Scholar 

  8. Salahuddin N, Shehata M. Polymethylmethacrylate-montmorillonite composites: preparation, characterization and properties. Polymer. 2001;42:8379–85.

    Article  CAS  Google Scholar 

  9. Moursi AM, Winnard AV, Winnard PL, Lannutti JJ, Seghi RR. Enhanced osteoblast response to a polymethylmethacrylate–hydroxyapatite composite. Biomaterials. 2002;23:133–44.

    Article  CAS  Google Scholar 

  10. Langer K, Marburger C, Berthold A, Kreuter J, Stieneker F. Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery part I: preparation and physicochemical characterization. Int J Pharm. 1996;137:67–74.

    Article  CAS  Google Scholar 

  11. Huang X, Brittain WJ. Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules. 2001;34:3255–60.

    Article  CAS  Google Scholar 

  12. Kim SS, Park TS, Shin BC, Kim YB. Polymethyl methacrylate/montmorillonite nanocomposite beads through a suspension polymerization-derived process. J Appl Polym Sci. 2005;97:2340–9.

    Article  CAS  Google Scholar 

  13. Mohammad A, Laleh S, Azizollah N, Seyed MM, Shahin K, Khatereh A, Samal B. PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater. 2009;25:339–47.

    Article  Google Scholar 

  14. Discacciati JAC, Oréfice RL. Structural analysis on photopolymerized dental resins containing nanocomponents. J Mater Sci. 2007;42:3883–93.

    Article  CAS  Google Scholar 

  15. Kaaber S, Thulin H, Nielsen E. Skin sensitivity to denture base materials in the burning mouth syndrome. Contact Dermat. 1979;5:90–6.

    Article  CAS  Google Scholar 

  16. Ruyter IE. Release of formaldehyde from denture base polymers. Acta Odontol Scand. 1980;38:17–27.

    Article  CAS  Google Scholar 

  17. Moharamzadeh K, Brook IM, Van Noort R, Scutt AM. HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci Mater Med. 2007;18:133–7.

    Article  CAS  Google Scholar 

  18. Kedjarune U, Charoenworaluk N, Koontongkaew S. Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer. Aust Dent J. 1999;44:25–30.

    Article  CAS  Google Scholar 

  19. Tuncel A, Ozdemir AK, Sumer Z, Hurmuzlu F, Polat Z. Cytotoxicity evaluation of two different composites with/without fibers and one nanohybrid composite. Dent Mater J. 2006;25:267–71.

    Article  CAS  Google Scholar 

  20. Moharamzadeh K, Brook IM, Van Noort R, Scutt AM, Smith KG, Thornhill MH. Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. J Mater Sci Mater Med. 2008;19:1793–801.

    Article  CAS  Google Scholar 

  21. Jorge JH, Giampaolo ET, Machado AL, Vergani CE. Cytotoxicity of denture base acrylic resins: a literature review. J Prosthet Dent. 2003;90:190–3.

    Article  CAS  Google Scholar 

  22. Van Kooten TG, Klein CL, Kohler H, Kirkpatrick CJ. From cytotoxicity to biocompatibility testing in vitro: cell adhesion molecule expression defines a new set of parameters. J Mater Sci Mater Med. 1997;8:835–41.

    Article  Google Scholar 

  23. ISO 10993-1:2003 Biological evaluation of medical devices-part 1: evaluation and testing. Geneva: International Organization for Standardization; 2003. p. 1–10.

  24. ISO 7405-1997 Dentistry-preclinical evaluation of biocompatibility of medical devices used in dentistry-test methods for dental materials. Geneva: International Organization for Standardization; 1997. p. 1–19.

  25. American National Standard/American Dental Association specification No. 96, Dental water-based cements.

  26. Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: a review. Dent Mater. 1996;12:186–93.

    Article  CAS  Google Scholar 

  27. ISO 10993-5:1992 Biological evaluation of medical devices-part 5: tests for cytotoxicity: in vitro methods. Geneva: International Organization for Standardization; 1992. p. 1–8.

  28. ISO 6344-1. Coated abrasives—grain size analysis. Geneva: International Organization for Standardization; 1998. p. 1–6.

  29. Edmondson JM, Armstrong LS, Martinez AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Cult Meth. 1988;11:15–7.

    Article  CAS  Google Scholar 

  30. ISO/TR 7405-1984(E) Heamolysis test (in vitro test directly on materials).

  31. Zhang L, Jin G. Novel method for bilirubin removal from human plasma within modified polytetrafluoroethylene capillary. React Funct Polym. 2006;66:1106–17.

    Article  CAS  Google Scholar 

  32. Delaney B, Shen ZR, Powley CR, Gannon S, Munley SA, Maxwell C, Barnett JF. Acute and repeated dose oral toxicity of N-acetyl-l-aspartic acid in Sprague–Dawley rats. Food Chem Toxicol. 2008;46:2023–34.

    Article  CAS  Google Scholar 

  33. Botham PA. Acute systemic toxicity—prospects for tiered testing strategies. Toxicol In Vitro. 2004;18:227–30.

    Article  CAS  Google Scholar 

  34. IS0 10993-2: 1992, Biological evaluation of medical devices-part 2: animal welfare requirements. Geneva: International Organization for Standardization; 1992. p. 1–3.

  35. ISO 10993-10 Biological evaluation of medical devices-part 10: tests for irritation and delayed-type hypersensitivity. Geneva: International Organization for Standardization; 2002. p. 1–44.

  36. Isbrucker RA, Edwards JA, Wolz E, Davidovich A, Bausch J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006;44:636–50.

    Article  CAS  Google Scholar 

  37. Kreiling R, Hollnagel HM, Hareng L, Eigler D, Lee MS, Griem P, Dreeßen B, Kleber M, Albrecht A, Garcia C, Wendel A. Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT). Food Chem Toxicol. 2008;46:1896–904.

    Article  CAS  Google Scholar 

  38. Yamano T, Shimizu M, Noda T. Quantitative comparison of the results obtained by the multiple-dose guinea pig maximization test and the non-radioactive murine local lymph-node assay for various biocides. Toxicology. 2005;211:165–75.

    Article  CAS  Google Scholar 

  39. Suter W, Martus HJ, Elhajouji A. Methylphenidate is not clastogenic in cultured human lymphocytes and in the mouse bone-marrow micronucleus test. Mutat Res. 2006;607:153–9.

    CAS  Google Scholar 

  40. MacGregor JT, Heddle JA, Hite M, Margolin BH. Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res. 1987;189:103–12.

    Article  CAS  Google Scholar 

  41. Wang HF, Wang J, Deng XY. Preparation and biological behaviors of 1251-labeled water-soluble single-wall carbon nanotubes. Nanosci Nanotechnol. 2004;4:1–6.

    Article  Google Scholar 

  42. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, Ding Q, Yuan S, Shen Z, Ping Q, Zhou H. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 2008;29:1233–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the extensive laboratory assistance of Microbiology Laboratory of Basic Medical College and Toxicology Laboratory of Public Health College, Tianjin Medical University. This investigation was supported by Program for New Century Excellent Talents in University, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Su, Q., Wang, C. et al. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material. J Mater Sci: Mater Med 22, 1063–1071 (2011). https://doi.org/10.1007/s10856-011-4269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4269-8

Keywords

Navigation