Skip to main content
Log in

Surface characterization and biological response of carbon-coated oxygen-diffused titanium having different topographical surfaces

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The materials (C-ODTi) with different topographical surfaces that possess interstitial oxygen atoms into the host titanium lattice and an upper nanometric surface layer of anatase-TiO2 covered by a carbon thin layer were fabricated in this study. The carbon thin layer on the surface of C-ODTi was composed of amorphous carbon and nano-graphite crystals. In vitro tests, using human bone marrow-derived mesenchymal cells (hBMCs), were performed to check cytotoxicity, examining in particular cell morphology, cell proliferation, cell differentiation, and mineralization capability. After 10 days of culture a higher degree of cell viability was observed on the surface of C-ODTi with an abraded surface. We also observed that hBMCs cultured in direct contact with C-ODTi maintained their capability to express alkaline phosphatase activity (ALP) and formed mineralized nodules similar to the control cultures. Our results demonstrate that the carbon layer coating on the surface of C-ODTi possess better biological response than commercially pure titanium (cp Ti), which was evidenced by the higher proliferation rates of osteoblasts, higher osteo-differentiation and a higher mineralization capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants. 2000;15:15–45.

    CAS  Google Scholar 

  2. Wenneberg A, Albrektsson T, Johansson C, Anderson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effect of blasting material and surface topography. Biomaterials. 1996;17:15–22.

    Article  Google Scholar 

  3. Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization of implant materials c.p. Ti, Ti–6Al–7Nb and Ti–6Al–4V with different pretreatments. J Mater Sci Mater Med. 1999;10:35–46.

    Article  CAS  Google Scholar 

  4. Wen HB, Wolke JGC, de Wijn JR, Liu Q, Cui FZ, de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials. 1997;22:1471–8.

    Article  Google Scholar 

  5. Sun J, Han Y, Cui K. Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surf Coat Technol. 2008;202:4248–56.

    Article  CAS  Google Scholar 

  6. Haddow DB, Kothari S, James PF, Short RD, Hatton PV, van Noort R. Synthetic implant surfaces. 1. The formation and characterization of sol-gel titania films. Biomaterials. 1996;17:501–7.

    Article  CAS  Google Scholar 

  7. Halary-Wagner E, Wagner FR, Brioude A, Mugnier J, Hoffmann P. Light-induced CVD of titanium dioxide thin films II: thin film crystallinity. Chem Vap Depos. 2005;11:29–37.

    Article  CAS  Google Scholar 

  8. Shtansky DV, Gloushankova NA, Bashova IA, Petrzhik MI, Sheveiko AN, Kiryukhantsev-Korneev FV, Reshetov IV, Grigoryan AS, Levashov EA. Multifunctional biocompatible nanostructured coatings for load-bearing implants. Surf Coat Technol. 2006;201:4111–8.

    Article  CAS  Google Scholar 

  9. Kweh SWK, Khor KA, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials. 2002;23:775–85.

    Article  CAS  Google Scholar 

  10. Braceras I, Alava JI, Goikoetxea L, de Maetzu MA, Onate JI. Interaction of engineered surfaces with the living world: ion implantation vs. osseointegration. Surf Coat Technol. 2007;201:8091–8.

    Article  CAS  Google Scholar 

  11. Garcia-Alonso MC, Saldan L, Valles G, Gonzalez-Carrasco JL, Gonzalez-Cabrero J, Martinez ME, Gil-Garay E, Munuera L. In vitro corrosion behavior and osteoblast response of thermally oxidized Ti6Al4V alloy. Biomaterials. 2003;24:19–26.

    Article  CAS  Google Scholar 

  12. Chung SH, Heo SJ, Koak JY, Kim SK, Lee JB, Han JS, Han CH, Rhyu IC, Lee SJ. Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study. J Oral Rehabil. 2008;35:229–36.

    Article  CAS  Google Scholar 

  13. Kim YH, Koak JY, Chang IT, Wennerberg A, Heo SJ. A histomorphometric analysis of the effects of various surface treatment methods on osseointegration. Int J Oral Maxillofac Implants. 2003;18:349–56.

    Google Scholar 

  14. Yamamoto O, Alvarez K, Kikuchi T, Fukuda M. Fabrication and characterization of oxygen-diffused titanium for biomedical applications. Acta Biomater. 2009;5:3605–15.

    Article  CAS  Google Scholar 

  15. Juopperi TA, Schuler W, Yuan X, Collector MI, Dang CV, Sharkis SJ. Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol. 2007;35:335–41.

    Article  CAS  Google Scholar 

  16. Mossmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  17. Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986;159:109–13.

    Article  CAS  Google Scholar 

  18. Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials. 2000;21:1095–102.

    Article  CAS  Google Scholar 

  19. Delhaes P, Couzi M, Trinquecoste M, Dentzer J, Hamidou H, Vix-Guterl C. A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon. 2006;44:3005–13.

    Article  CAS  Google Scholar 

  20. López-Honorato E, Meadows PJ, Shatwell RA, Xiao P. Characterization of the anisotropy of pyrolytic carbon by Raman spectroscopy. Carbon. 2010;48:881–90.

    Article  Google Scholar 

  21. Larouche N, Stansfield BL. Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon. 2010;48:620–9.

    Article  CAS  Google Scholar 

  22. Goto A, Kyotani M, Tsugawa K, Piao G, Akagi K, Yamaguchi C, et al. Nanostructures of pyrolytic carbon from a polyacetylene thin film. Carbon. 2003;41:131–8.

    Article  CAS  Google Scholar 

  23. Vallerot JM, Bourrat X, Mouchon A, Chollon G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon. 2006;44:1833–44.

    Article  CAS  Google Scholar 

  24. Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126–30.

    Article  CAS  Google Scholar 

  25. Lian JB, Stein GS. Concepts of osteoblast growth and differentiation-basis for modulation of bone cell-development and tissue formation. Crit Rev Oral Biol Med. 1992;3:269–305.

    CAS  Google Scholar 

  26. Bellows CG, Aubin JE, Heersche JNM. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 1991;14:27–40.

    Article  CAS  Google Scholar 

  27. Anderson HC, Morris DC. Mineralization. Physiology and pharmacology of bone. In: Mundy GR, Martin TJ, editors. Handbook of experimental pharmacology. New York: Springer-Verlag; 1993. p. 267–98.

    Google Scholar 

  28. Bellows CG, Heersche JN, Aubin JE. Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev Biol. 1990;140:132–8.

    Article  CAS  Google Scholar 

  29. Declercq HA, Verbeeck RMH, De Ridder LIFJM, Schacht EH, Cornelissen MJ. Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials. 2005;26:4964–74.

    Article  CAS  Google Scholar 

  30. Gregory CA, Gunn WG, Peister A, Prockop DJ. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329:77–84.

    Article  CAS  Google Scholar 

  31. Lievremont M, Potus J, Guillou B. Use of alizarin red S for histochemical staining of Ca2+ in the mouse; some parameters of the chemical reaction in vitro. Acta Anatom. 1982;114:268–80.

    Article  CAS  Google Scholar 

  32. Ferraz MP, Fernandes MH, Trigo Cabral A, Santos JD, Monteiro FJ. In vitro growth and differentiation of osteoblast-like human bone marrow cells on glass reinforced hydroxyapatite plasma-sprayed coatings. J Mater Sci Mater Med. 1999;10:567–76.

    Article  CAS  Google Scholar 

  33. Keller JC, Stanford CM, Wightman JP, Draughn RA, Zaharias R. Characterization of titanium implant surfaces III. J Biomed Mater Res. 1994;28:939–46.

    Article  CAS  Google Scholar 

  34. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants. 1992;7:302–10.

    CAS  Google Scholar 

  35. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 1995;29:389–401.

    Article  CAS  Google Scholar 

  36. Shapira L, Halabi A. Behavior of two osteoblast-like cell lines cultured on machined or rough titanium surfaces. Clin Oral Impl Res. 2009;20:50–5.

    Article  Google Scholar 

  37. Boyan BD, Lincks J, Lohmann CH, Sylvia VL, Cochran KL, Blanchard CR, Dean DD, Schwart Z. Effect of surface roughness and composition on costochondral chondrocytes is dependent on cell maturation state. J Orthop Res. 1999;17:446–57.

    Article  CAS  Google Scholar 

  38. Cochran DL, Simpson J, Weber HP, Buser D. Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Maxillofac Implants. 1994;9:289–97.

    Google Scholar 

  39. Weiss RE, Reddi AH. Appearance of fibronectin during the differentiation of cartilage bone and bone marrow. J Cell Biol. 1981;88:630–6.

    Article  CAS  Google Scholar 

  40. Pearson BS, Klebe RJ, Boyan BD, Moskowicz D. Comments on the clinical application of fibronectin in dentistry. J Dent Res. 1988;67:515–7.

    Article  CAS  Google Scholar 

  41. Bigerelle M, Anselme K, Noël N, Ruderman I, Hardoiun P, Iost A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials. 2002;23:1563–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, O., Alvarez, K., Kashiwaya, Y. et al. Surface characterization and biological response of carbon-coated oxygen-diffused titanium having different topographical surfaces. J Mater Sci: Mater Med 22, 977–987 (2011). https://doi.org/10.1007/s10856-011-4267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4267-x

Keywords

Navigation