Skip to main content

Advertisement

Log in

Composition–property relationships for an experimental composite nerve guidance conduit: evaluating cytotoxicity and initial tensile strength

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The objective of this work was to examine the main (individual), combined (interaction) and second-order (quadratic) effects of: (i) poly(d,l-lactide-co-glycolide) (PLGA), (ii) F127, and (iii) a zinc-silicate based bioactive glass, on the cytotoxicity and ultimate tensile strength of an experimental nerve guidance conduit (NGC). The experimental plan was carried out according to a Box–Behnken design matrix. The effects of each compositional factor were quantified using response surface methodology (RSM) techniques. Linear and quadratic polynomial equations were developed to examine cytotoxicity (after incubation at 3, 7 and 28 days) and initial ultimate tensile strength (UTS0). Multiple regression analyses showed that the developed models yielded a good prediction for each response examined. It was observed that the beneficial effects of PLGA and bioactive glass on controlling cytotoxicity appeared greater than that of F127. Furthermore, the experimental conduits (with the exception of CNGC-I and CNGC-K) generally showed superior cytocompatibility when compared with the comparable literature for the clinically used nerve guidance conduit Neurolac®. In this investigation, optimal compositions for cell viability were obtained for the following composition: PLGA = 18.89 wt%/F127 = 0.52 wt%/glass = 12.71 wt%. The optimization of composition with respect to ultimate tensile strength was also established (desired UTS0 being based on the properties of the control device Neurolac® whose UTS is c.20 MPa). The desired UTS0 of ≤20 MPa was found for the composition: PLGA = 18.63 wt%/F127 = 0.77 wt%/glass = 5.54 wt%. A UTS0 ≤30 MPa was recorded for the composition: PLGA = 18.34 wt%/F127 = 0.62 wt%/glass = 9.83 wt%, such tensile strengths are comparable to, reported values for Neurolac®. Examination of the composition–property relationships with respect to combining cell viability and UTS0 indicated preferred compositions in the range 17.97–19.90 wt% PLGA, 0.16–1.13 wt% F127 and between 5.54 and ≤20 wt% glass. This research demonstrates the value of a design of experiments approach for the design of novel nerve guidance conduits, and shows that the materials examined may have potential for the repair of peripheral nerve discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bender MD, Bennett JM, Waddell RL, Doctor JS, Marra KG. Multi-channelled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials. 2004;25:1269–78.

    Article  CAS  Google Scholar 

  2. Hoppen HJ, Leenslag JW, Pennings AJ, van der Lei B, Robinson PH. Two-ply biodegradable nerve guide: basic aspects of design, construction and biological performance. Biomaterials. 1990;11:286–90.

    Article  CAS  Google Scholar 

  3. Kiyotani T, Teramachi M, Takimoto Y, Nakamura T, Shimizu Y, Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 1996;740:66–74.

    Article  CAS  Google Scholar 

  4. Keeley R, Nguyen K, Stephanides M, Padilla J, Rosen J. The artificial nerve graft: a comparison of blended elastomer-hydrogel with polyglycolic acid conduits. J Reconstr Microsurg. 1991;7:93–100.

    Article  CAS  Google Scholar 

  5. Ao Q, Wang A, Cao W, Zhao C, Gong Y, Zhao N, Zhang X. Fabrication and characterization of chitosan nerve conduits with microtubular architectures. Tsinghua Sci Technol. 2005;10:435–8.

    Article  CAS  Google Scholar 

  6. Bini T, Gao S, Xu X, Wang S, Ramakrishna S, Leong K. Peripheral nerve regeneration by microbraided poly(l-lactide-co-glycolide) biodegradable polymer fibers. J Biomed Mater Res A. 2004;68:286–95.

    Article  CAS  Google Scholar 

  7. Gregg JM. Gore-tex tubing as a conduit for repair of lingual and inferior alveolar nerve continuity defects: a preliminary report. J Oral Maxillofac Surg. 1998;56:321–2.

    Article  Google Scholar 

  8. Luis AL, Rodrigues JM, Amado S, Veloso AP, Armada-Da-silva PAS, Raimondo S, Fregnan F, Ferreira AJ, Lopes MA, Santos JD, Geuna S, Varejão ASP, Maurício AC. PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery. 2007;27:125–37.

    Article  Google Scholar 

  9. Smith RM, Wiedl C, Chubb P, Greene CH. Role of small intestine submucosa (SIS) as a nerve conduit: preliminary report. J Investig Surg. 2004;17:339–44.

    Article  Google Scholar 

  10. Steuer H, Fadale R, Müller E, Müller H-W, Planck H, Schlosshauer B. Biohybride nerve guide for regeneration: degradable polylactide fibers coated with rat Schwann cells. Neurosci Lett. 1999;277:165–8.

    Article  CAS  Google Scholar 

  11. Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec. 2001;263(4):396–404.

    Article  CAS  Google Scholar 

  12. Ortiguela ME, Wood MB, Cahill DR. Anatomy of the sural nerve complex. J Hand Surg Am Vol. 1987;12A(6):1119–23.

    Google Scholar 

  13. Bellamkonda RV. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials. 2006;27(19):3515–8.

    CAS  Google Scholar 

  14. Barbour SA, King W. The safe and effective use of allograft tissue: an update. Am J Sports Med. 2003;31(1):791–7.

    Google Scholar 

  15. Robertson A, Nutton RW, Keating JF. Current trends in the use of tendon allografts in orthopaedic surgery. J Bone Joint Surg Br Vol. 2006;88(B)(8):988–92.

    Article  Google Scholar 

  16. Udina E, Gold BG, Navarro X. Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle Nerve. 2004;29(6):812–22.

    Article  CAS  Google Scholar 

  17. Grand AG, Myckatyn TM, Mackinnon SE, Hunter DA. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice. J Neurosurg. 2002;96(5):924–32.

    Article  CAS  Google Scholar 

  18. Archibald S, Krarup C, Shefner J, Li S, Madison R. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol. 1991;306:685–96.

    Article  CAS  Google Scholar 

  19. Keilhoff G, Stang F, Wolf G, Fansa H. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials. 2003;24:2779–87.

    Article  CAS  Google Scholar 

  20. Alluin O, Wittmann C, Marqueste T, Chabas JF, Garcia S, Lavaut MN, Guinard D, Feron F, Decherchi P. Functional recovery after peripheral nerve injury and implantation of a collagen guide. Biomaterials. 2009;30:363–73.

    Article  CAS  Google Scholar 

  21. Rodríguez FJ, Gómez N, Perego G, Navarro X. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials. 1999;20:1489–500.

    Article  Google Scholar 

  22. Meek MF, Jansen K, Steendam R, van Oeveren W, van Wachem PB, van Luyn MJA. In vitro degradation and biocompatibility of poly(dl-lactide-epsilon-caprolactone) nerve guides. J Biomed Mater Res A. 2004;68A:43–51.

    Article  CAS  Google Scholar 

  23. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–70.

    Article  CAS  Google Scholar 

  24. Knowles JC, Hastings GW, Ohta H, Niwa S, Boeree N. Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials. 1992;13:491–6.

    Article  CAS  Google Scholar 

  25. Baino F, Verne E, Vitale-Brovarone C. Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. J Mater Sci Mater Med. 2009;20:2189–95.

    Article  CAS  Google Scholar 

  26. Cohen S, Baño MC, Clima LG, Allcock HR, Vacanti CA, Langer R. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater. 1993;13(1–4):3–10.

    Article  CAS  Google Scholar 

  27. Murphy S, Wren AW, Towler MR, Boyd D. The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility. J Mater Sci Mater Med. 2010;21:2827–34.

    Article  CAS  Google Scholar 

  28. Maquet V, Boccaccini AR, Pravata L, Notingher I, JÈrÙme R. Porous poly([alpha]-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Biomaterials. 2004;25(18):4185–94.

    Article  CAS  Google Scholar 

  29. Chen GP, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol Biosci. 2002;2:67–77.

    Article  CAS  Google Scholar 

  30. Vlahos A, Yu P, Lucas CE, Ledgerwood AM. Effect of a composite membrane of chitosan and poloxamer gel on postoperative adhesive interactions. Am Surg. 2001;67:15–21.

    CAS  Google Scholar 

  31. Oh SH, Kim JH, Kim JM, Lee JH. Asymmetrically porous PLGA/F127 membrane for effective guided bone regeneration. J Biomater Science Polym Ed. 2006;17:1375–87.

    Article  CAS  Google Scholar 

  32. Zheng JQ, Poo MM. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol. 2007;23:375–404.

    Article  CAS  Google Scholar 

  33. Akiyama H, Matsu-ura T, Mikoshiba K, and Kamiguchi H. Control of neuronal growth cone navigation by asymmetric inositol 1,4,5-trisphosphate signals. Sci Signal. 2009;2(79):ra34.

    Article  Google Scholar 

  34. Zheng JQ. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature. 2000;403:89–93.

    Article  CAS  Google Scholar 

  35. Kater SB, Mills LR. Regulation of growth cone behaviour by calcium. J Neurosci. 1991;11:891–9.

    CAS  Google Scholar 

  36. Gu X, Spitzer NC. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature. 1995;375:784–7.

    Article  CAS  Google Scholar 

  37. Wildman REC, Medeiros M. Advanced human nutrition. Boca Raton: CRC Press LLC; 2000.

    Google Scholar 

  38. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ. Auto-catalytic ceria nano-particles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28:1918–25.

    Article  CAS  Google Scholar 

  39. Inagaki K, Haraguchi H. Determination of rare earth elements in human blood serum by inductively coupled plasma mass spectrometry after chelating resin preconcentration. Analyst. 2000;125:191–6.

    Article  CAS  Google Scholar 

  40. Leonelli C, Lusvardi G, Malavasi L, Menabue L, Tonelli M. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J Noncryst Solids. 2003;316:198–216.

    Article  CAS  Google Scholar 

  41. Stanstead HH. Zinc is essential for brain development and function. J Trace Elem Exp Med. 2003;16:165–73.

    Article  Google Scholar 

  42. Únal B, Tan HS, Orbak Z, Kiki I, Bilici M, Bilici N, Aslan HS, Kaplan SL. Morphological alteration produced by zinc deficiency in rat sciatic nerve: a histological, electron microscope, and stereological study. Brain Res. 2005;1048:228–34.

    Article  Google Scholar 

  43. Jia H, Hou W, Wei L, Xu B, Liu X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent Mater. 2005;24:244–9.

    Article  Google Scholar 

  44. Boyd D, Hi L, Tanner DA, Towler MR, Wall J. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci Mater Med. 2005;17(6):489–94.

    Article  Google Scholar 

  45. Gray M. Does oral zinc supplementation promote healing of chronic wounds? J WOCN. 2003;6:295–9.

    Google Scholar 

  46. Zhang X, Kehoe S, Adhi S, Ajithkumar T, Moane S, O'Shea H, Boyd D. Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si-Na-Ca-Zn-Ce glasses: potential components for nerve guidance conduits. Mater Sci Eng C. 2011;31:669–76.

    Article  CAS  Google Scholar 

  47. Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/bioglass → composites with tailored pore structure for tissue engineering applications. Compos Sci Technol. 2003;63(16):2417–29.

    Article  CAS  Google Scholar 

  48. Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jerome R. Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/bioglass → composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C. 2005;25:23–31.

    Article  Google Scholar 

  49. Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27:3800–9.

    Article  CAS  Google Scholar 

  50. Kehoe S, Stokes J. Box-Behnken design of experiments investigation of hydroxyapatite synthesis for orthopedic applications. J Mater Eng Perform. 2010;20:306–16.

    Article  Google Scholar 

  51. Eltawahni HA, Olabi AG, Benyounis KY. Effect of process parameters and optimization of CO2 laser cutting of ultra high-performance polyethylene. Mater Des. 2010;31(8):4029–38.

    Article  CAS  Google Scholar 

  52. Benyounis KY, Olabi AG, Hashmi MSJ. Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Opt Laser Technol. 2008;40(1):76–87.

    Article  CAS  Google Scholar 

  53. Benyounis KY, Olabi AG. Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw. 2008;39(6):483–96.

    Article  Google Scholar 

  54. Whitcomb PJ, Anderson M. DOE simplified: practical tools for effective experimentation. New York: Productivity Inc.; 2000. ISBN 1563272253.

  55. Boyd D, Towler MR, Freeman C, Farthing P, Brook IM. Comparison of in vitro and in vivo bioactivity of SrO–CaO–ZnO–SiO2 glass grafts. J Biomater Appl. 2009;23(6):561–72.

    Article  Google Scholar 

  56. ISO 10993 part 5: biological evaluation of medical devices. Tests for in vitro cytotoxicity. 2009.

  57. Khattack SF, Bhatia SR, Roberts SC. F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng. 2005;11:974–83.

    Article  Google Scholar 

  58. Oh SH, Kim JH, Song KS, Jeon BH, Yoon JH, Seo TB, Namgung U, Lee IW, Lee JH. Peripheral nerve regeneration within an asymmetrically porous PLGA/F127 nerve guide conduit. Biomaterials. 2008;29:1601–9.

    Article  CAS  Google Scholar 

  59. Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chemicobiol Interact. 2007;167:207–18.

    Article  CAS  Google Scholar 

  60. Ishai O, Cohen LJ. Elastic properties of filled and porous epoxy composites. Int J Mech Sci. 1967;9:539–46.

    Article  Google Scholar 

  61. Beg Q, Sahai V, Gupta R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in bioreactor. Process Biochem. 2003;39:203–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Enterprise Ireland as part of a proof of concept (PC/2008/315) project under the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Kehoe or D. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehoe, S., Zhang, X.F. & Boyd, D. Composition–property relationships for an experimental composite nerve guidance conduit: evaluating cytotoxicity and initial tensile strength. J Mater Sci: Mater Med 22, 945–959 (2011). https://doi.org/10.1007/s10856-011-4263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4263-1

Keywords

Navigation