Skip to main content
Log in

Development of the novel biotube inserting technique for acceleration of thick-walled autologous tissue-engineered vascular grafts fabrication

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To accelerate the fabrication of thick-walled autologous tissue-engineered vascular grafts (TEVGs), a novel biotube inserting technique was developed. After 2 weeks of subcutaneous embedding in rabbits, silicone rods (diameter, 3 mm; length, 35 mm) became encapsulated in connective tissues. Single-layered biotubes were obtained after removing the silicone rods. One silicone rod encapsulated in tissues was inserted into a single-layered biotube to form two layers of autologous tubular tissues. Three layers of autologous tubular tissues were also obtained by applying the same technique. Following a 2-week re-embedding procedure, two layers or three layers of autologous tubular tissues were integrated to form two-layered or three-layered TEVGs. Both wall thickness and burst pressure of three-layered TEVGs were significantly higher than those of two-layered and single-layered TEVGs (P < 0.05). The two-layered TEVGs could be applied as small-caliber vascular grafts, and three-layered TEVGs could be applied as medium- or large-caliber vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang D, Guo T, Nie C, Morris SF. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study. Ann Plast Surg. 2009;62(3):297–303.

    Article  CAS  Google Scholar 

  2. L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12(1):47–56.

    Google Scholar 

  3. Charlesworth PM, Brewster DC, Darling RC, Robison JG, Hallet JW. The fate of polytetrafluoroethylene grafts in lower limb bypass surgery: a six year follow-up. Br J Surg. 1985;72(11):896–9.

    Article  CAS  Google Scholar 

  4. Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, Towne JB, Bernhard VM, Bonier P, Flinn WR, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3(1):104–14.

    Article  CAS  Google Scholar 

  5. Rumisek JD, Wade CE, Brooks DE, Okerberg CV, Barry MJ, Clarke JS. Heat-denatured albumin-coated Dacron vascular grafts: physical characteristics and in vivo performance. J Vasc Surg. 1986;4(2):136–43.

    Article  CAS  Google Scholar 

  6. Freischlag JA, Moore WS. Clinical experience with a collagen-impregnated knitted Dacron vascular graft. Ann Vasc Surg. 1990;4(5):449–54.

    Article  CAS  Google Scholar 

  7. Zilla P, Deutsch M, Meinhart J, Puschmann R, Eberl T, Minar E, Dudczak R, Lugmaier H, Schmidt P, Noszian I, et al. Clinical in vitro endothelialization of femoropopliteal bypass grafts: an actuarial follow-up over three years. J Vasc Surg. 1994;19(3):540–8.

    CAS  Google Scholar 

  8. Mertens RA, O’Hara PJ, Hertzer NR, Krajewski LP, Beven EG. Surgical management of infrainguinal arterial prosthetic graft infections: review of a thirty-five-year experience. J Vasc Surg. 1995;21(5):782–90.

    Article  CAS  Google Scholar 

  9. Greisler HP. Interactions at the blood/material interface. Ann Vasc Surg. 1990;4(1):98–103.

    Article  CAS  Google Scholar 

  10. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12(3):361–5.

    Article  Google Scholar 

  11. Nakayama Y, Ishibashi-Ueda H, Takamizawa K. In vivo tissueengineered small-caliber arterial graft prosthesis consisting of autologous tissue (Biotube). Cell Transplant. 2004;13(4):439–49.

    Article  Google Scholar 

  12. Lee W, Park BY. The subcutaneous capsules for foreign body in fetal rabbits: peliminary report. Yonsei Med J. 2001;42(6):595–601.

    CAS  Google Scholar 

  13. Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y. Development of biotube vascular grafts incorporating cuffs for easy implantation. J Artif Organs. 2007;10(1):10–5.

    Article  Google Scholar 

  14. Sakai O, Kanda K, Ishibashi-Ueda H, Takamizawa K, Ametani A, Yaku H, Nakayama Y. Development of the wing-attached rod for acceleration of “Biotube” vascular grafts fabrication in vivo. J Biomed Mater Res B Appl Biomater. 2007;83(1):240–7.

    Google Scholar 

  15. Sakai O, Kanda K, Takamizawa K, Sato T, Yaku H, Nakayama Y. Faster and stronger vascular “Biotube” graft fabrication in vivo using a novel nicotine-containing mold. J Biomed Mater Res B Appl Biomater. 2009;90(1):412–20.

    Google Scholar 

  16. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.

    Article  CAS  Google Scholar 

  17. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science. 1999;284(5413):489–93.

    Article  CAS  Google Scholar 

  18. Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res. 2006;98(1):25–35.

    Article  CAS  Google Scholar 

  19. Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, McKee JA, Klinger RY, Counter CM, Niklason LE. Blood vessels engineered from human cells. Lancet. 2005;365(9477):2122–4.

    Article  Google Scholar 

  20. L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med. 2007;357(14):1451–3.

    Article  Google Scholar 

  21. L’Heureux N, Dusserre N, Marini A, Garrido S, de la Fuente L, McAllister T. Technology insight: the evolution of tissue-engineered vascular grafts–from research to clinical practice. Nat Clin Pract Cardiovasc Med. 2007;4(7):389–95.

    Article  Google Scholar 

  22. Huang H, Zhou YM, Ishibashi-Ueda H, Takamizawa K, Ando J, Kanda K, Yaku H, Nakayama Y. In vitro maturation of “biotube” vascular grafts induced by a 2-day pulsatile flow loading. J Biomed Mater Res B Appl Biomater. 2009;91(1):320–8.

    Google Scholar 

  23. McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L’heureux N. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet. 2009;373(9673):1440–6.

    Article  Google Scholar 

  24. Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, Fiorillo A, Avila H, Wystrychowski W, Zagalski K, Maruszewski M, Jones AL, Cierpka L, de la Fuente LM, L’Heureux N. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials. 2009;30(8):1542–50.

    Article  CAS  Google Scholar 

  25. Campbell GR, Campbell JH. Development of tissue engineered vascular grafts. Curr Pharm Biotechnol. 2007;8(1):43–50.

    Article  CAS  Google Scholar 

  26. Campbell JH, Efendy JL, Han C, Girjes AA, Campbell GR. Haemopoietic origin of myofibroblasts formed in the peritoneal cavity in response to a foreign body. J Vasc Res. 2000;37(5):364–71.

    Article  CAS  Google Scholar 

  27. Hoenig MR, Campbell GR, Rolfe BE, Campbell JH. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler Thromb Vasc Biol. 2005;25(6):1128–34.

    Article  CAS  Google Scholar 

  28. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res. 1999;85(12):1173–8.

    CAS  Google Scholar 

  29. Mironov V, Kasyanov V. Emergence of clinical vascular tissue engineering. Lancet. 2009;373(9673):1402–4.

    Article  Google Scholar 

  30. Fischlein T, Zilla P, Meinhart J, Puschmann R, Vesely M, Eberl T, Balon R, Deutsch M. In vitro endothelialization of a mesosystemic shunt: a clinical case report. J Vasc Surg. 1994;19(3):549–54.

    CAS  Google Scholar 

  31. Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y. Autologous small-caliber “biotube” vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits. J Biomed Mater Res B Appl Biomater. 2010;92(1):236–42.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Science and Technology Committee of Shanghai (09JC1410400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, N., Wang, Z., Chen, H. et al. Development of the novel biotube inserting technique for acceleration of thick-walled autologous tissue-engineered vascular grafts fabrication. J Mater Sci: Mater Med 22, 1037–1043 (2011). https://doi.org/10.1007/s10856-011-4257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4257-z

Keywords

Navigation