Skip to main content
Log in

In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium-deficient hydroxyapatite (Ca-def-HAP) coatings on titanium alloy (Ti6Al4V) substrates are elaborated by pulsed electrodeposition. In vitro dissolution/precipitation process is investigated by immersion of the coated substrate into Dulbecco’s Modified Eagle Medium (DMEM) from 1 h to 28 days. Calcium and phosphorus concentrations evolution in the biological liquid are determined by Induced Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for each immersion time. Physical and chemical characterizations of the coating are performed by scanning electron microscopy (SEM) associated to Energy Dispersive X-ray Spectroscopy (EDXS) for X-ray microanalysis. Surface modifications are investigated by an original method based on the three-dimensional reconstruction of SEM images (3D-SEM). Moreover, corrosion measurements are carried out by potentiodynamic polarization experiments. The results show that the precipitation rate of the Ca-def HAP coating is more pronounced in comparison with that of stoichiometric hydroxyapatite (HAP) used as reference. The precipitated bone-like apatite coating is thick, homogenous and exhibits an improved link to the substrate. Consequently, the corrosion behaviour of the elaborated prosthetic material is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rammelt S, Heck C, Bernhardt R, Bierbaum S, Scharnweber D, Goebbels J, et al. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. J Orthop Res. 2007;25:1052–61.

    Article  CAS  Google Scholar 

  2. Yildirim OS, Aksakal B, Hanyaloglu SC, Erdogan F, Okur A. Hydroxyapatite dip coated and uncoated titanium poly-axial pedicle screws: an in vivo bovine model. Spine. 2006;31:1780–8.

    Article  Google Scholar 

  3. Schouten C, Meijer GJ, Van den Beucken JJJP, Leeuwenburgh SCG, De Jonge LT, Wolke JGC, et al. In vivo bone response and mechanical evaluation of electrosprayed CaP nanoparticle coatings using the iliac crest of goats as an implantation model. Acta Biomater. 2010;6:2227–36.

    Article  CAS  Google Scholar 

  4. Borsari V, Fini M, Giavaresi G, Tschon M, Chiesa R, Chiusoli L, et al. Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments. J Biomed Mater Res A. 2009;89:550–60.

    CAS  Google Scholar 

  5. Hesse C, Hengst M, Kleeberg R, Götze J. Influence of experimental parameters on spatial phase distribution in as-sprayed and incubated hydroxyapatite coatings. J Mater Sci Mater Med. 2008;19:3235–41.

    Article  CAS  Google Scholar 

  6. Lombardi AVJ, Berend KR, Mallory TH. Hydroxyapatite-coated titanium porous plasma spray tapered stem—experience at 15 to 18 years. Clin Orthop Relat Res. 2006;453:81–5.

    Article  Google Scholar 

  7. Chen CC, Huang TH, Kao CT, Ding SJ. Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys. J Biomed Mater Res B Appl Biomater. 2006;78B:146–52.

    Article  CAS  Google Scholar 

  8. Eshtiagh-Hosseini H, Housaindokht M, Chahkandi M. Effects of parameters of sol–gel process on the phase evolution of sol–gel-derived hydroxyapatite. Mater Chem Phys. 2007;106:310–6.

    Article  CAS  Google Scholar 

  9. Fellah BH, Layrolle P. Sol–gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater. 2009;5:735–42.

    Article  CAS  Google Scholar 

  10. Wang D, Chen C, He T, Lei T. Hydroxyapatite coating on Ti6Al4V alloy by a sol–gel method. J Mater Sci Mater Med. 2008;19:2281–6.

    Article  CAS  Google Scholar 

  11. Kim H, Camata RP, Lee S, Rohrer GS, Rollett AD, Vohra YK. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta Mater. 2007;55:131–9.

    Article  CAS  Google Scholar 

  12. Dinda GP, Shin J, Mazumder J. Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: effect of heat treatment on structure and properties. Acta Biomat. 2009;5:1821–30.

    Article  CAS  Google Scholar 

  13. Yamaguchi S, Yabutsuka T, Hibino M, Yao T. Generation of hydroxyapatite patterns by electrophoretic deposition. J Mater Sci Mater Med. 2008;19:1419–24.

    Article  CAS  Google Scholar 

  14. Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: from traditional ceramics to nanotechnology. J Europ Ceram Soc. 2008;28:1353–67.

    CAS  Google Scholar 

  15. Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci. 2009;255:6736–44.

    Article  CAS  Google Scholar 

  16. Benhayoune H, Laquerriere P, Jallot E, Perchet A, Kilian L, Balossier G, et al. Micrometer level structural and chemical evaluation of electrodeposited calcium phosphate coatings on TA6V substrate by STEM-EDXS. J Mater Sci Mater Med. 2002;13:1057–63.

    Article  CAS  Google Scholar 

  17. Eliaz N, Eliyahu M. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J Biomed Mater Res A. 2007;80:621–34.

    Google Scholar 

  18. Abdel-Aal EA, Dietrich D, Steinhaeuser S, Wielage B. Electrocrystallization of nanocrystallite calcium phosphate coatings on titanium substrate at different current densities. Surf Coat Tech. 2008;202:5895–900.

    Article  CAS  Google Scholar 

  19. Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C. 2002;20:153–60.

    Article  Google Scholar 

  20. Lopez-Heredia MA, Weiss P, Layrolle P. An electrodeposition method of calcium phosphate coatings on titanium alloy. J Mater Sci Mater Med. 2007;18:381–90.

    Article  CAS  Google Scholar 

  21. Wang SH, Shih WJ, Li WL, Hon MH, Wang MC. Morphology of calcium phosphate coatings deposited on a Ti–6Al–4V substrate by an electrolytic method under 80 Torr. J Europ Ceram Soc. 2005;25:3287–92.

    Article  CAS  Google Scholar 

  22. Lin S, LeGeros RZ, LeGeros JP. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J Biomed Mater Res A. 2003;66:819–28.

    Article  Google Scholar 

  23. Zhang Q, Chen J, Feng J, Cao Y, Deng C, Zhang X. Dissolution and mineralization behaviours of HA coatings. Biomaterials. 2003;24:4741–8.

    Article  CAS  Google Scholar 

  24. Benhayoune H, Drevet R, Faure J, Potiron S, Gloriant T, Oudadesse H, et al. Elaboration of monophasic and biphasic calcium phosphate coatings on Ti6Al4V substrate by pulsed electrodeposition current. Adv Eng Mater. 2010;12(6):B192–9.

    Article  Google Scholar 

  25. Drevet R, Benhayoune H, Wortham L, Potiron S, Douglade J, Laurent-Maquin D. Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings. Mater Charact. 2010;61:786–95.

    Article  CAS  Google Scholar 

  26. Dumelie N, Benhayoune H, Balossier G. TF_Quantif: a procedure for quantitative mapping of thin films on heterogeneous substrates in electron probe microanalysis (EPMA). J Phys D Appl Phys. 2007;40:2124–31.

    Article  CAS  Google Scholar 

  27. Benhayoune H. X-ray microanalysis of multi-elements coatings using Auger formalism: application to biomaterials. J Phys D Appl Phys. 2002;35:1526–31.

    Article  CAS  Google Scholar 

  28. Benhayoune H, Dumelie N, Balossier G. Substrate effects correction in Auger spectroscopy and electron probe microanalysis of thin films. Thin Solid Films. 2005;493:113–23.

    Article  CAS  Google Scholar 

  29. ISO 13779-3. Implants for surgery—hydroxyapatite—part 3: chemical analysis and characterization of crystallinity and phase purity.

  30. Dumelie N, Benhayoune H, Rousse-Bertrand C, Bouthors S, Perchet A, Wortham L, et al. Characterization of electrodeposited calcium phosphate coatings by complementary scanning electron microscopy and scanning-transmission electron microscopy associated to X-ray microanalysis. Thin Solid Films. 2005;492:131–9.

    Article  CAS  Google Scholar 

  31. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.

    Article  Google Scholar 

  32. Eliaz N, Sridhar TM. Electrocrystallization of hydroxyapatite and its dependence on solution conditions. Cryst Growth Des. 2008;8:3965–77.

    Article  CAS  Google Scholar 

  33. Dumelie N, Benhayoune H, Richard D, Laurent-Maquin D, Balossier G. In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Mater Charact. 2008;59:129–33.

    Article  CAS  Google Scholar 

  34. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R. 2009;66:1–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Drevet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drevet, R., Velard, F., Potiron, S. et al. In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate. J Mater Sci: Mater Med 22, 753–761 (2011). https://doi.org/10.1007/s10856-011-4251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4251-5

Keywords

Navigation