Skip to main content

Advertisement

Log in

Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4 system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium substituted trimagnesium phosphate with the general formula CaxMg(3−x)(PO4)2 (0 < x < 1.5) was synthesized by calcination of powder mixtures with the appropriate stoichiometry and reacted with 3.5 M diammonium hydrogenphosphate solution to form a cementitious matrix of magnesium ammonium phosphate hexahydrate (struvite). The degree of ionic substitution was shown to influence physical cement properties; clinically suitable cement formulations with setting times in the range 5–15 min and compressive strengths of >50 MPa were obtained for x ≤ 0.75 together with a grinding time ≥1 h and a powder to liquid ratio ≥2.5 g/ml. The cement cytocompatibility was investigated by culturing human osteoblast cell line MG63 on cement surfaces demonstrating pronounced cell growth during 13 days cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Frayssinet P, Rouquet N, Tourenne F, Fages J, Hardy D, Bonel G. Cell-degradation of calcium–phosphate ceramics. Cells Mater. 1993;3(4):383–94.

    CAS  Google Scholar 

  2. Gross KA, Berndt CC. Biomedical application of apatites. Rev Mineral Geochem. 2002;48:631–72.

    Article  CAS  Google Scholar 

  3. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41(17):3130–46.

    Article  CAS  Google Scholar 

  4. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31:S37–47.

    Article  Google Scholar 

  5. Breusch SJ, Kuhn KD. Bone cements based on polymethylmethacrylate. Orthopade. 2003;32(1):41–50.

    Article  CAS  Google Scholar 

  6. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10:S114–21.

    Article  Google Scholar 

  7. Pittet C, Lemaitre J. Mechanical characterization of brushite cements: a mohr circles’ approach. J Biomed Mater Res. 2000;53(6):769–80.

    Article  CAS  Google Scholar 

  8. Theiss F, Apelt D, Brand BA, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26(21):4383–94.

    Article  CAS  Google Scholar 

  9. Oberle A, Theiss F, Bohner M, Muller J, Kastner SB, Frei C, Zlinszky K, Wunderlin S, Auer JA, von Rechenberg B. Investigation about the clinical use of brushite-and hydroxylapatite-cement in sheep. Schweizer Archiv für Tierheilkunde. 2005;147(11):482–90.

    Article  CAS  Google Scholar 

  10. Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—an experimental study in sheep. J Craniomaxillofac Surg. 2005;33(1):37–44.

    Article  Google Scholar 

  11. Bohner M. pH variations of a solution after injecting brushite cements. Key Eng Mater. 2000;192–1:813–6.

    Google Scholar 

  12. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115(10):2598–608.

    Article  CAS  Google Scholar 

  13. Rahaman MS, Mavinic DS, Bhuiyan MIH, Koch FA. Exploring the determination of struvite solubility product from analytical results. Environ Tech. 2006;27(9):951–61.

    Article  CAS  Google Scholar 

  14. Driessens FCM, Boltong MG, Wenz R, Meyer J. Calcium phosphates as fillers in struvite cements. Key Eng Mater. 2005;284–286:161–4.

    Article  Google Scholar 

  15. Hall DA, Stevens R, El Jazairi B. Effect of water content on the structure and mechanical properties of magnesia–phosphate cement mortar. J Am Ceram Soc. 1998;81(6):1550–6.

    Article  CAS  Google Scholar 

  16. Sarkar AK. Hydration dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J Mater Sci. 1991;26(9):2514–8.

    Article  CAS  Google Scholar 

  17. ASTM-Standard C266-99. Standard test method for time of setting of hydraulic cement paste by Gilmore needles. West Conshohocken: ASTM International; 2002.

    Google Scholar 

  18. Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. BioMed Eng Online. 2006;5:22.

    Article  Google Scholar 

  19. Ando J. Phase diagrams of Ca3(PO4)2—Mg3(PO4)2 and Ca3(PO4)2—CaNaPO4 Systems. Bull Chem Soc Jpn. 1958;31:201–4.

    Article  CAS  Google Scholar 

  20. Klammert U, Reuther T, Jahn C, Kübler AC, Gbureck U. Biocompatibility of brushite and monetite cell culture scaffolds made by 3D powder printing. Acta Biomaterialia. 2009;5:727–34.

    Article  CAS  Google Scholar 

  21. Clarke SA, Hoskins NL, Jordan GR, Henderson SA, Marsh DR. In vitro testing of advanced JAXTM bone void filler system: species differences in the response of bone marrow stromal cells to β-tricalcium phosphate and carboxymethylcellulose gel. J Mater Sci Mater Med. 2007;18:2283–90.

    Article  CAS  Google Scholar 

  22. Jalota S, Bhaduri SB, Tas AC. In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers. J Biomed Mater Res. 2006;78A:481–90.

    Article  CAS  Google Scholar 

  23. Driessens FCM, Boltong MG, Bermudez O, Planell JA, Ginebra MP, Fernandez E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med. 1994;5:164–70.

    Article  CAS  Google Scholar 

  24. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia. 2009;5:1233–40.

    Article  CAS  Google Scholar 

  25. Wu F, Su J, Wei J, Guo H, Liu CS. Injectable bioactive calcium–magnesium phosphate cement for bone regeneration. Biomed Mater. 2008;3:044105.

    Article  Google Scholar 

  26. Gbureck U, Grolms O, Grover L, Barralet JE, Thull R. Mechanical activation of β-tricalcium phosphate and cement formation with Na2HPO4 solution. Biomaterials. 2003;24:4123–31.

    Article  CAS  Google Scholar 

  27. Hofmann M, Mohammed AR, Perrie Y, Gbureck U, Barralet JE. High strength resorbable brushite bone cement with controlled drug releasing capabilities. Acta Biomaterialia. 2009;5:43–9.

    Article  CAS  Google Scholar 

  28. Takahashi T, Yamamoto M, Ioku K, Goto S. Relationship between compressive strength and pore structure of hardened cement pastes. Adv Cem Res. 1997;9:25–30.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG Gb1/11-1 and DFG Mu1803/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Gbureck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorndran, E., Ewald, A., Müller, F.A. et al. Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4 system. J Mater Sci: Mater Med 22, 429–436 (2011). https://doi.org/10.1007/s10856-010-4220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4220-4

Keywords

Navigation