Abstract
Calcium substituted trimagnesium phosphate with the general formula CaxMg(3−x)(PO4)2 (0 < x < 1.5) was synthesized by calcination of powder mixtures with the appropriate stoichiometry and reacted with 3.5 M diammonium hydrogenphosphate solution to form a cementitious matrix of magnesium ammonium phosphate hexahydrate (struvite). The degree of ionic substitution was shown to influence physical cement properties; clinically suitable cement formulations with setting times in the range 5–15 min and compressive strengths of >50 MPa were obtained for x ≤ 0.75 together with a grinding time ≥1 h and a powder to liquid ratio ≥2.5 g/ml. The cement cytocompatibility was investigated by culturing human osteoblast cell line MG63 on cement surfaces demonstrating pronounced cell growth during 13 days cultivation.







References
Frayssinet P, Rouquet N, Tourenne F, Fages J, Hardy D, Bonel G. Cell-degradation of calcium–phosphate ceramics. Cells Mater. 1993;3(4):383–94.
Gross KA, Berndt CC. Biomedical application of apatites. Rev Mineral Geochem. 2002;48:631–72.
Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41(17):3130–46.
Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31:S37–47.
Breusch SJ, Kuhn KD. Bone cements based on polymethylmethacrylate. Orthopade. 2003;32(1):41–50.
Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10:S114–21.
Pittet C, Lemaitre J. Mechanical characterization of brushite cements: a mohr circles’ approach. J Biomed Mater Res. 2000;53(6):769–80.
Theiss F, Apelt D, Brand BA, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26(21):4383–94.
Oberle A, Theiss F, Bohner M, Muller J, Kastner SB, Frei C, Zlinszky K, Wunderlin S, Auer JA, von Rechenberg B. Investigation about the clinical use of brushite-and hydroxylapatite-cement in sheep. Schweizer Archiv für Tierheilkunde. 2005;147(11):482–90.
Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—an experimental study in sheep. J Craniomaxillofac Surg. 2005;33(1):37–44.
Bohner M. pH variations of a solution after injecting brushite cements. Key Eng Mater. 2000;192–1:813–6.
Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115(10):2598–608.
Rahaman MS, Mavinic DS, Bhuiyan MIH, Koch FA. Exploring the determination of struvite solubility product from analytical results. Environ Tech. 2006;27(9):951–61.
Driessens FCM, Boltong MG, Wenz R, Meyer J. Calcium phosphates as fillers in struvite cements. Key Eng Mater. 2005;284–286:161–4.
Hall DA, Stevens R, El Jazairi B. Effect of water content on the structure and mechanical properties of magnesia–phosphate cement mortar. J Am Ceram Soc. 1998;81(6):1550–6.
Sarkar AK. Hydration dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J Mater Sci. 1991;26(9):2514–8.
ASTM-Standard C266-99. Standard test method for time of setting of hydraulic cement paste by Gilmore needles. West Conshohocken: ASTM International; 2002.
Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. BioMed Eng Online. 2006;5:22.
Ando J. Phase diagrams of Ca3(PO4)2—Mg3(PO4)2 and Ca3(PO4)2—CaNaPO4 Systems. Bull Chem Soc Jpn. 1958;31:201–4.
Klammert U, Reuther T, Jahn C, Kübler AC, Gbureck U. Biocompatibility of brushite and monetite cell culture scaffolds made by 3D powder printing. Acta Biomaterialia. 2009;5:727–34.
Clarke SA, Hoskins NL, Jordan GR, Henderson SA, Marsh DR. In vitro testing of advanced JAXTM bone void filler system: species differences in the response of bone marrow stromal cells to β-tricalcium phosphate and carboxymethylcellulose gel. J Mater Sci Mater Med. 2007;18:2283–90.
Jalota S, Bhaduri SB, Tas AC. In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers. J Biomed Mater Res. 2006;78A:481–90.
Driessens FCM, Boltong MG, Bermudez O, Planell JA, Ginebra MP, Fernandez E. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med. 1994;5:164–70.
Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia. 2009;5:1233–40.
Wu F, Su J, Wei J, Guo H, Liu CS. Injectable bioactive calcium–magnesium phosphate cement for bone regeneration. Biomed Mater. 2008;3:044105.
Gbureck U, Grolms O, Grover L, Barralet JE, Thull R. Mechanical activation of β-tricalcium phosphate and cement formation with Na2HPO4 solution. Biomaterials. 2003;24:4123–31.
Hofmann M, Mohammed AR, Perrie Y, Gbureck U, Barralet JE. High strength resorbable brushite bone cement with controlled drug releasing capabilities. Acta Biomaterialia. 2009;5:43–9.
Takahashi T, Yamamoto M, Ioku K, Goto S. Relationship between compressive strength and pore structure of hardened cement pastes. Adv Cem Res. 1997;9:25–30.
Acknowledgment
The authors would like to acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG Gb1/11-1 and DFG Mu1803/7-1).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vorndran, E., Ewald, A., Müller, F.A. et al. Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4 system. J Mater Sci: Mater Med 22, 429–436 (2011). https://doi.org/10.1007/s10856-010-4220-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10856-010-4220-4