Skip to main content

Advertisement

Log in

Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O2 in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O2 feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O2 is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O2 remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Black J. Biological performance of materials: fundamentals of bio-compatibility. New York: Marcel Dekker; 1992.

    Google Scholar 

  2. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.

    Article  Google Scholar 

  3. Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Relat Res. 1992(276):7–18.

  4. Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Neil DA, Harris WH. The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg Am. 1983;65(5):575–84.

    CAS  Google Scholar 

  5. Amstutz HC, Grigoris P. Metal on metal bearings in hip arthroplasty. Clin Orthop Relat Res. 1996(329 Suppl):S11–34.

  6. McKellop H, Park SH, Chiesa R, Doorn P, Lu B, Normand P, Grigoris P, Amstutz H. In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin Orthop Relat Res. 1996(329 Suppl):S128–40.

  7. Medley JB, Chan FW, Krygier JJ, Bobyn JD. Comparison of alloys and designs in a hip simulator study of metal on metal implants. Clin Orthop Relat Res. 1996(329 Suppl):S148–59.

  8. Wagner M, Wagner H. Medium-term results of a modern metal-on-metal system in total hip replacement. Clin Orthop Relat Res. 2000(379):123–33.

  9. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am. 2001;83A(3):428–36.

    Google Scholar 

  10. Moran CG, Tourret LJ. Recent advances: orthopaedics. BMJ. 2001;322(7291):902–5.

    Article  CAS  Google Scholar 

  11. Kobayashi S, Ohgoe Y, Ozeki K, Hirakuri K, Aoki H. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J Mater Sci Mater Med. 2007;18(12):2263–8.

    Article  CAS  Google Scholar 

  12. Ohgoe Y, Kobayashi S, Ozeki K, Aoki H, Nakamori H, Hirakuri KK, Miyashita O. Reduction effect of nickel ion release on a diamond-like carbon film coated onto an orthodontic archwire. Thin solid Films. 2006;497(1–2):218–22.

    Article  CAS  Google Scholar 

  13. Lettington A, Steeds JW. Thin film diamond. London: Chapman and Hall; 1994.

    Google Scholar 

  14. Davis RF. Diamond films and coatings. Park Ridge: Noyes Publications; 1993.

    Google Scholar 

  15. Chen X, Narayan J. Effect of the chemical nature of transition-metal substrates on chemical-vapor deposition of diamond. J Appl Phys. 1993;74(16):4168–73.

    Article  CAS  Google Scholar 

  16. Godbole VP, Narayan R, Xu Z, Narayan J, Sankar J. Diamond films and composites on cobalt–chromium alloys. Mater Sci Eng B. 1999;58:251–7.

    Article  Google Scholar 

  17. Wei Q, Yu Z, Ma L, Yin D. Enhanced nucleation and smoothness of nanocrystalline diamond films via W–C gradient interlayer. Int J Mod Phys B. 2009;23(6–7):1676–82.

    Article  CAS  Google Scholar 

  18. Polini R, Mantini FP, Braic M, Amar M, Ahmed W, Taylor H, Jackson MJ. Effects of Ti- and Zr-based interlayer coatings on hot-filament chemical vapor deposition of diamond on high-speed steel. J Mater Eng Perform. 2007;15(2):201–7.

    Article  Google Scholar 

  19. Zuo D, Li XF, Wang M, Li L, Lu WZ. Adhesion improvement of CVD diamond film by introducing an electro-deposited interlayer. J Mat Proc Technol. 2003;138:455.

    Article  CAS  Google Scholar 

  20. Narayan J, Godbole VP, White CW. Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science. 1991;252(5004):416–8.

    Article  CAS  Google Scholar 

  21. Lee S-T, Chen S, Agostinelli J, Braunstein G, Huang LJ, Lau WM. Laser processing of carbon-implanted Cu, Ni, and Co crystals—an attempt to grow diamond films. Appl Phys Lett. 1992;60:2213–5.

    Article  CAS  Google Scholar 

  22. Neto MA, Pereira E. Influence of oxygen and nitrogen addition during growth of CVD diamond on pure cobalt substrates. Diam Relat Mater. 2006;15:465–71.

    Article  CAS  Google Scholar 

  23. Liou Y, Inspektor A, Weimer R, Knight D, Messier R. The effect of oxygen in diamond deposition by microwave plasma enhancement chemical vapor deposition. J Mater Res. 1990;5:2305–12.

    Article  CAS  Google Scholar 

  24. Shah SI, Waite MM. Effect of oxygen on the nucleation and growth of diamond thin films. Appl Phys Lett. 1992;61:3113.

    Article  CAS  Google Scholar 

  25. Kawato T, Kondo K. Effects of Oxygen on CVD diamond synthesis. Jpn J Appl Phys. 1987;26:1429–32.

    Article  CAS  Google Scholar 

  26. Tang J, Neves AJ, Fernandes AJS. Study the effect of O2 addition on hydrogen incorporation in CVD diamond. Diam Relat Mater. 2004;13(1):203–8.

    Article  CAS  Google Scholar 

  27. Dementjev AP, Petukhov MN. The role of oxygen atoms in sp 2sp 3 conversion on the growing surface of carbon film. In: Gielisse PJ, Ivanov-Omskii VI, Popovici G, Prelas M, editors. Diamond and diamond-like film applications. Lancaster, PA: Technomic Publishing Company, Inc; 1998.

    Google Scholar 

  28. Catledge SA, Comer W, Vohra YK. In situ diagnostics of film thickness and surface roughness of diamond films on a Ti–6Al–4V alloy by optical pyrometry. Appl Phys Lett. 1998;73:181–3.

    Article  CAS  Google Scholar 

  29. McHargue J. Mechanical properties of diamond and diamond-like films. In: Tzeng Y, Yoshikawa M, Murakawa M, Feldman A, editors. Applications of diamond films and related materials. Amsterdam: Elsevier; 1991. p. 113.

    Google Scholar 

  30. Fabes BD, Oliver WC, McKee RA, Walker FJ. The determination of film hardness from the composite response of film and substrate to nanometer scale indentations. J Mater Res. 1992;7:3056.

    Article  CAS  Google Scholar 

  31. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564.

    Article  CAS  Google Scholar 

  32. Salis SR, Gardiner DJ, Bowden M, Savage J, Rodway D. Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm. Diam Relat Mater. 1996;5:589.

    Article  Google Scholar 

  33. Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans A Math Phys Eng Sci. 2004;362(1824):2477–512.

    Article  CAS  Google Scholar 

  34. Catledge SA, Vohra YK. Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations. J Appl Phys. 1999;86:698.

    Article  CAS  Google Scholar 

  35. Vandamme NS, Topoleski LD. Control of surface morphology of carbide coating on Co–Cr–Mo implant alloy. J Mater Sci Mater Med. 2005;16(7):647–54.

    Article  CAS  Google Scholar 

  36. Vandamme NS, Que L, Topoleski LDT. Carbide surface coating of Co–Cr–Mo implant alloys by a microwave plasma-assisted reaction. J Mater Sci. 1999;34:3525–31.

    Article  CAS  Google Scholar 

  37. Wu WT, Chen KH, Hsu CM. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating. Nanotechnology. 2006;17:4542–7.

    Article  CAS  Google Scholar 

  38. Bethune DS, Klang CH, Vries MSd, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363:605–7.

    Article  CAS  Google Scholar 

  39. Samingprai S, Tantayanon S, Ma YH. Chromium oxide intermetallic diffusion barrier for palladium membrane supported on porous stainless steel. J Memb Sci. 2010;347(1–2):8–16.

    Article  CAS  Google Scholar 

  40. Ezhovskii YK, Egorov AL. Characteristics of the interfaces and the properties of chromium oxide nanolayers on gallium arsenide. Phys Solid State. 2007;49(9):1638–42.

    Article  Google Scholar 

  41. Hegedus C, Daroczi L, Kokenyesi V, Beke DL. Comparative microstructural study of the diffusion zone between NiCr alloy and different dental ceramics. J Dent Res. 2002;81(5):334–7.

    Article  CAS  Google Scholar 

  42. Yang HDZ, Libera M, Jacobson DC, Wang YC, Davis RF. Structural and chemical characteristics and oxidation behaviour of chromium-implanted single crystal silicon carbide. J Mater Sci. 1995;30(10):2668–74.

    Article  Google Scholar 

  43. Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans Math Phys Eng Sci. 2004;362:2477–512.

    Article  CAS  Google Scholar 

  44. Toprani N, Catledge SA, Vohra YK, Thompson R. Interfacial adhesion and toughness of nanostructured diamond coatings. J Mater Res. 2002;15:1052.

    Article  Google Scholar 

  45. Voevodin AA, Zabinski JS. Load-adaptive crystalline-amorphous nanocomposites. J Mater Sci. 1998;33:319.

    Article  CAS  Google Scholar 

  46. Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior. Wear. 2000;246:1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support by Award Number R01AR056665 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Arthritis and Musculoskeletal and Skin Diseases or the National Institutes of Health. The authors thank Smith & Nephew, Inc. for providing the CoCrMo disks used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane A. Catledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catledge, S.A., Vaid, R., Diggins, P. et al. Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy. J Mater Sci: Mater Med 22, 307–316 (2011). https://doi.org/10.1007/s10856-010-4207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4207-1

Keywords

Navigation