Skip to main content
Log in

A homogenous CS/NaCMC/n-HA polyelectrolyte complex membrane prepared by gradual electrostatic assembling

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A homogenous membrane composed of chitosan (CS), sodium carboxymethyl cellulose (NaCMC) and nano hydroxyapatite (n-HA) was prepared by a gradual electrostatic assembling (GEA) method. The physical and chemical properties of the membranes with different n-HA contents and CS/NaCMC ratios were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and mechanical test. The schematic formation mechanism of the membrane was discussed. The results show that GEA is an effective method to prepare the polyelectrolyte complex (PEC) membrane, in which oppositely charged CS-NaCMC polysaccharides can assemble mildly and gradually through electrostatic interaction to form the membrane framework, while the filled n-HA crystals can regulate the structure stability of the composite membrane. The optimum preparation condition for the PEC membrane can be fixed to a content of 60 wt% n-HA, an equivalent amount of CS to NaCMC and a drying temperature of 60°C. The PEC membrane may have good prospect for guided bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia L. In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J Biomed Mater Res. 2000;51(1):107–16.

    Article  CAS  Google Scholar 

  2. Sæther HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym. 2008;74(4):813–21.

    Article  Google Scholar 

  3. Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21(24):2615–21.

    Article  Google Scholar 

  4. Schwarz HH, Richau K, Paul D. Membranes from polyelectrolyte complexes. Polym Bull. 1991;25(1):95–100.

    CAS  Google Scholar 

  5. Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Lowen H. Polyelectrolyte complexes. Adv Polym Sci. 2004;166:113–71.

    Google Scholar 

  6. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32.

    Article  CAS  Google Scholar 

  7. Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose—the natural power to heal wounds. Biomaterials. 2006;27(2):145–51.

    Article  CAS  Google Scholar 

  8. Malcolm Brown R, Saxena IM, Kudlicka K. Cellulose biosynthesis in higher plants. Trends Plant Sci. 1996;1(5):149–56.

    Article  Google Scholar 

  9. Lal GS, Hayes ER. Determination of the amine content of chitosan by pyrolysis-gas chromatography. J Anal Appl Pyrolysis. 1984;6(2):183–93.

    Article  CAS  Google Scholar 

  10. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydro gels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.

    Article  CAS  Google Scholar 

  11. Peniche C, Argüelles-Monal W, de Biomateriales C. Chitosan based polyelectrolyte complexes. Macromol Symp. 2001;168(1):103–16.

    Article  CAS  Google Scholar 

  12. Bernabé P, Peniche C, Argüelles-Monal W. Swelling behaviour of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polym Bull. 2005;55(5):367–75.

    Article  Google Scholar 

  13. Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci. 2009;333(1–2):68–78.

    Article  CAS  Google Scholar 

  14. Heinze T. New ionic polymers by cellulose functionalization. Macromol Chem Phys. 1998;199(11):2341–64.

    Article  CAS  Google Scholar 

  15. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1–2):1–33.

    CAS  Google Scholar 

  16. Gómez-Burgaz M, Garcia-Ochoa B, Torrado-Santiago S. Chitosan–carboxymethylcellulose inter polymer complexes for gastric-specific delivery of clarithromycin. Int J Pharm. 2008;359(1–2):135–43.

    Article  Google Scholar 

  17. Feng Z, Shao Z, Yao J, Huang Y, Chen X. Protein adsorption and separation with chitosan-based amphoteric membranes. Polymer. 2009;50(5):1257–63.

    Article  CAS  Google Scholar 

  18. Chen X, Liu J, Feng Z, Shao Z. Macroporous chitosan/carboxymethylcellulose blend membranes and their application for lysozyme adsorption. J Appl Polym Sci. 2005;96(4):1267–74.

    Article  CAS  Google Scholar 

  19. Ren Y, Chen Z, Geng Y, Chen R, Zheng X. Usage of anisomeric square pulse with fluctuating frequency for electrochemical generation of FeO4 2− in CS–CMC bipolar membrane electrolysis cell. Chem Eng Process. 2008;47(4):708–15.

    CAS  Google Scholar 

  20. Haberska K, Ruzgas T. Polymer multilayer film formation studied by in situ ellipsometry and electrochemistry. Bioelectrochemistry. 2009;76(1–2):153–61.

    Article  CAS  Google Scholar 

  21. Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials. 2009;30(5):743–50.

    Article  CAS  Google Scholar 

  22. Jansen JA, De Ruijter JE, Janssen PTM, Paquay Y. Histological evaluation of a biodegradable polyactive (R)/hydroxyapatite membrane. Biomaterials. 1995;16(11):819–27.

    Article  CAS  Google Scholar 

  23. Li W, Sun B, Wu P. Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydr Polym. 2009;78(3):454–61.

    Article  CAS  Google Scholar 

  24. Murugan R, Ramakrishna S. Development of nano composites for bone grafting. Compos Sci Technol. 2005;65(15–16):2385–406.

    Article  CAS  Google Scholar 

  25. Jiang L, Li Y, Xiong C. A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I. Preparation and properties. J Mater Sci Mater Med. 2009;20(8):1645–52.

    Article  CAS  Google Scholar 

  26. Jiang LY, Li YB, Zhang L, Wang XJ. Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair. Mater Sci Eng C. 2009;29(1):193–8.

    Article  CAS  Google Scholar 

  27. Wang X, Li Y, Wei J, de Groot K. Development of biomimetic nano-hydroxyapatite/poly (hexamethylene adipamide) composites. Biomaterials. 2002;23(24):4787–91.

    Article  CAS  Google Scholar 

  28. Jayaraman M, Meyer U, Bühner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25(4):625–31.

    Article  CAS  Google Scholar 

  29. Niederauer GG, McGee TD, Keller JC, Zaharias RS. Attachment of epithelial cells and fibroblasts to ceramic materials. Biomaterials. 1994;15(5):342–52.

    Article  CAS  Google Scholar 

  30. Zhang L, Jin Y, Liu H, Du Y. Structure and control release of chitosan/carboxymethyl cellulose microcapsules. J Appl Polym Sci. 2001;82(3):584–92.

    Article  CAS  Google Scholar 

  31. Gómez-Burgaz M, Torrado G, Torrado S. Characterization and superficial transformations on mini-matrices made of inter polymer complexes of chitosan and carboxymethylcellulose during in vitro clarithromycin release. Eur J Pharm Biopharm. 2009;73(1):130–9.

    Article  Google Scholar 

  32. Rosca C, Popa MI, Lisa G, Chitanu GC. Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan–carboxymethylcellulose complex. Carbohydr Polym. 2005;62(1):35–41.

    Article  CAS  Google Scholar 

  33. Wei J, Li Y. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polym J. 2004;40(3):509–15.

    Article  CAS  Google Scholar 

  34. Kesting RE. Synthetic polymeric membranes: a structural perspective. New York: Wiley; 1985.

    Google Scholar 

  35. Hyder MN, Chen P. Pervaporation dehydration of ethylene glycol with chitosan–poly (vinyl alcohol) blend membranes: effect of CS–PVA blending ratios. J Membr Sci. 2009;340(1–2):171–80.

    Article  CAS  Google Scholar 

  36. Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Noris Suarez K, Moro L. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem. 1997;68(1):45–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by China 973 fund (No. 2007CB936102) and China–Netherlands Program Strategic Alliances (No. 2008DFB50120).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zuo or Yubao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Zuo, Y., Cheng, L. et al. A homogenous CS/NaCMC/n-HA polyelectrolyte complex membrane prepared by gradual electrostatic assembling. J Mater Sci: Mater Med 22, 289–297 (2011). https://doi.org/10.1007/s10856-010-4195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4195-1

Keywords

Navigation