Skip to main content
Log in

Scaffold percolative efficiency: in vitro evaluation of the structural criterion for electrospun mats

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fibrous scaffolds of engineered structures can be chosen as promising porous environments when an approved criterion validates their applicability for a specific medical purpose. For such biomaterials, this paper sought to investigate various structural characteristics in order to determine whether they are appropriate descriptors. A number of poly(3-hydroxybutyrate) scaffolds were electrospun; each of which possessed a distinguished architecture when their material and processing conditions were altered. Subsequent culture of mouse fibroblast cells (L929) was carried out to evaluate the cells viability on each scaffold after their attachment for 24 h and proliferation for 48 and 72 h. The scaffolds’ porosity, pores number, pores size and distribution were quantified and none could establish a relationship with the viability results. Virtual reconstruction of the mats introduced an authentic criterion, “Scaffold Percolative Efficiency” (SPE), with which the above descriptors were addressed collectively. It was hypothesized to be able to quantify the efficacy of fibrous scaffolds by considering the integration of porosity and interconnectivity of the pores. There was a correlation of 80% as a good agreement between the SPE values and the spectrophotometer absorbance of viable cells; a viability of more than 350% in comparison to that of the controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Park JB, Bronzino JD. Biomaterials: principles and applications. 1st ed. New York: CRC Press; 2002.

    Google Scholar 

  2. Lanza RP, Langer R, Vacanti J. Principles of tissue engineering. 3rd ed. New York: Academic Press; 2007.

    Google Scholar 

  3. Laurencin CT, Nair LS. Nanotechnology and tissue engineering: the scaffold. 1st ed. New York: CRC Press; 2008.

    Google Scholar 

  4. Knackstedt MA, Arns CH, Senden TJ, Gross K. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials. 2006;27:2776–86.

    Article  CAS  PubMed  Google Scholar 

  5. Khang G, Kim MS, Bang H. A manual for biomaterials/scaffold fabrication technology. 1st ed. New Jersey: World scientific publishing company; 2007.

    Google Scholar 

  6. Sill TJ, Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  CAS  PubMed  Google Scholar 

  7. Heikkil P, Harlin A. Macromolecular nanotechnology: parameter study of electrospinning of polyamide-6. Eur Polym J. 2008;44:3067–79.

    Article  Google Scholar 

  8. Sell S, Barnes C, Simpson D, Bowlin G. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen. J Biomed Mater Res Part A. 2007;85:115–26.

    Google Scholar 

  9. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C. 2007;27:504–9.

    Article  CAS  Google Scholar 

  10. Lemon G, Waters SL, Rose FR, King JR. Mathematical modelling of human mesenchymal stem cell proliferation and differentiation inside artificial porous scaffolds. J Theor Biol. 2007;249:543–53.

    Article  CAS  PubMed  Google Scholar 

  11. Safinia L, Mantalaris A, Bismarck A. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering. Langmuir. 2006;22:3235–42.

    Article  CAS  PubMed  Google Scholar 

  12. Moore MJ, Jabbari E, Ritman EL, Lu L, Currier BL, Windebank AJ, et al. Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. J Biomed Mater Res Part A. 2004;71:258–67.

    Article  Google Scholar 

  13. Ziabari M, Mottaghitalab V, Haghi AK. Evaluation of electrospun nanofiber pore structure parameters. Korean J Chem Eng. 2008;25:923–32.

    Article  CAS  Google Scholar 

  14. Tian F, Hosseinkhani H, Estrada G, Kobayashi H. Quantitative method for the analysis of cell attachment using aligned scaffold structures. J Phys Conf Ser. 2007;61:587–90.

    Article  CAS  ADS  Google Scholar 

  15. Theron SA, Zussman E, Yarin AL. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer. 2004;45:2017–30.

    Article  CAS  Google Scholar 

  16. Ojha SS, Afshari M, Kotek R, Gorga RE. Morphology of electrospun nylon-6 nanofibers as a function of molecular weight and processing parameters. J Appl Polym Sci. 2008;108:308–19.

    Article  CAS  Google Scholar 

  17. Gu SY, Ren J, Vancso GJ. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur Polym J. 2005;41:2559–68.

    Article  CAS  Google Scholar 

  18. Tan S, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultrafine fiber fabrication via electrospinning process. Polymer. 2005;46:6128–34.

    Article  CAS  Google Scholar 

  19. Deitzel JM, Kleinmeyer J, Harris D, Tan NB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261–72.

    Article  CAS  Google Scholar 

  20. Tehrani AH, Zadhoush A, Karbasi S, Khorasani SN. Experimental investigation of governing parameters in electrospinning poly(3-hydroxybutyrate) scaffolds: structural characteristics of the pores. J Appl Polym Sci 2010; doi:10.1002/app32620.

  21. Dierickx W. Opening size determination of technical textiles used in agricultural applications. Geotext Geomembr. 1999;17:231–45.

    Article  Google Scholar 

  22. Ziabari M, Mottaghitalab V, Haghi AK. Simulated image of electrospun nonwoven web of PVA and corresponding nanofiber diameter distribution. Korean J Chem Eng. 2008;25:919–22.

    Article  CAS  Google Scholar 

  23. Mobarakeh LG, Semnani D, Morshed M. A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J Appl Polym Sci. 2007;106:2536–42.

    Article  Google Scholar 

  24. Sengers BG, Taylor M, Please CP, Oreffo ROC. Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials. 2007;28:1926–40.

    Article  CAS  PubMed  Google Scholar 

  25. Sun W, Lal P. Recent development on computer aided tissue engineering—a review. Comput Methods Programs Biomed. 2002;67:85–103.

    Article  PubMed  Google Scholar 

  26. Sengers BG, Oomens OWJ, Baaijens FPT. An integrated finite element approach to mechanics, transport and biosynthesis in tissue engineering. J Biomech Eng. 2004;126:82–91.

    Article  PubMed  Google Scholar 

  27. Wilson CG, Bonassar LJ, Kohles SS. Modeling the dynamic composition of engineered cartilage. Arch Biochem Biophys. 2002;408:246–54.

    Article  CAS  PubMed  Google Scholar 

  28. Ajaal TT, Smith RW. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts. J Mater Process Technol. 2009;209:1521–32.

    Article  CAS  Google Scholar 

  29. Hsieh KL, Tong LI, Chiu HP, Yeh HY. Optimization of a multi-response problem in Taguchi’s dynamic system. Comput Ind Eng. 2005;49:556–71.

    Article  Google Scholar 

  30. Ritter HL, Drake C. Pore-size distribution in porous materials. Ind Eng Chem. 1945;17:782–6.

    Article  CAS  Google Scholar 

  31. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Biomed Mater Res. 2002;60:613–21.

    Article  CAS  Google Scholar 

  32. Jones JR, Poologasundarampillai G, Atwood RC, Bernard D, Lee PD. Non-destructive quantitative 3D analysis for the optimization of tissue scaffolds. Biomaterials. 2007;28:1404–13.

    Article  CAS  PubMed  Google Scholar 

  33. Xi SJ. A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement. Comput Aided Des. 2008;40:1040–50.

    Article  Google Scholar 

  34. Blacher S, Maquet V, Schils F, Martin D, Schoenen J, Moonen G, et al. Image analysis of the axonal ingrowth into poly(d, l-lactide) porous scaffolds in relation to the 3-D porous structure. Biomaterials. 2003;24:1033–40.

    Article  CAS  PubMed  Google Scholar 

  35. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  PubMed  Google Scholar 

  36. Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27:596–606.

    Article  CAS  PubMed  Google Scholar 

  37. Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, et al. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials. 2005;26:4453–9.

    Article  CAS  PubMed  Google Scholar 

  38. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.

    Article  PubMed  Google Scholar 

  39. Suwantong O, Waleetorncheepsawat S, Sanchavanakit N, Pavasant P, Cheepsunthorn P, Bunaprasert T, et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. Int J Biol Macromol. 2007;40:217–23.

    Article  CAS  PubMed  Google Scholar 

  40. Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer. 2007;48:1419–27.

    Article  CAS  Google Scholar 

  41. Sajeev US, Anand KA, Menon D, Nair S. Control of nanostructures in PVA PVA/chitosan blends and PCl through electrospinning. Bull Mater Sci. 2008;31:343–51.

    Article  CAS  Google Scholar 

  42. Venugopal J, Ramakrishna S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol. 2005;125:147–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zadhoush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidarkhan Tehrani, A., Zadhoush, A., Karbasi, S. et al. Scaffold percolative efficiency: in vitro evaluation of the structural criterion for electrospun mats. J Mater Sci: Mater Med 21, 2989–2998 (2010). https://doi.org/10.1007/s10856-010-4149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4149-7

Keywords

Navigation