Skip to main content

Corrosion behaviour of β-Ti20Mo alloy in artificial saliva

Abstract

To evaluate the potential of β-Ti20Mo alloy as a dental material, we tested its corrosion behaviour in artificial saliva in comparison to that of cp-Ti. Open-circuit potential (EOC), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used as electrochemical methods to characterize the corrosion behaviour of Ti20Mo alloy and cp-Ti, respectively. Corrosion current and passive current densities obtained from the polarization curves showed low values indicating a typical passive behaviour for Ti20Mo alloy. The EIS technique enabled us to study the nature of the passive film formed on the binary Ti20Mo alloy at various imposed potentials. The Bode phase spectra obtained for Ti20Mo alloy in artificial saliva exhibited two-time constants at higher potential (0.5 V, 1.0 V), indicating a two-layer structure. According to our experimental measurements, Ti20Mo alloy appears to possess superior corrosion resistance to that of cp-Ti in artificial saliva.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Williams DF. Biocompatibility of clinical implant materials. In: Williams DF, editor. Biocompatibility of clinical implant materials, vol.1. Boca Raton: CRC Press; 1981. p. 9–44.

    Google Scholar 

  2. Kovacs P, Davidson JA. Chemical and electrochemical aspects of the biocompatibility of titanium and its alloys. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the materials and biological issues. ASTM STP 1272. West Chonshohocken: ASTM; 1996. p. 163–78.

    Chapter  Google Scholar 

  3. Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta. 1996;141:1143–53.

    Article  Google Scholar 

  4. Gonzalez JEG, Mirza Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471:109–15.

    CAS  Article  Google Scholar 

  5. Long MJ, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 1998;19:1621–39.

    CAS  Article  PubMed  Google Scholar 

  6. Kim HS, Lim SH, Yeo ID, Kim WY. Stress-induced martensitic transformation of metastable β-titanium alloy. Mater Sci Eng A. 2007;449–451:322–5.

    Google Scholar 

  7. Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta. 2006;51:1815–9.

    Article  Google Scholar 

  8. Raman V, Nagarajan S, Rajendran N. Electrochemical impedance spectroscopic characterisation of passive film formed over β Ti–29Nb–13Ta–4.6 Zr alloy. Electrochem Comm. 2006;8:1309–14.

    CAS  Article  Google Scholar 

  9. Lee TM. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4 V in Hank/EDTA solution. J Mater Sci Mater Med. 2006;17:15–27.

    CAS  Article  PubMed  Google Scholar 

  10. Mareci D, Ungureanu G, Aelenei D, Mirza Rosca JC. Electrochemical characteristics of titanium based biomaterials in artificial saliva. Mater Corros. 2007;11:848–56.

    Article  Google Scholar 

  11. Metikos-Hukovic M, Kwokal A, Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24:3765–75.

    CAS  Article  PubMed  Google Scholar 

  12. Milosev I, Metikos-Hukovic M, Strehblow HH. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials. 2000;21:2103–13.

    CAS  Article  PubMed  Google Scholar 

  13. Milosev I, Kosec T, Strehblow HH. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim Acta. 2008;53:3547–58.

    CAS  Article  Google Scholar 

  14. Elias CN, Oshida Y, Cavalcante Lima JH, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1:234–42.

    Article  PubMed  Google Scholar 

  15. Van Noort R. Titanium: the implant material of today. J Mater Sci. 1987;22:3801–11.

    Article  ADS  Google Scholar 

  16. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243:231–6.

    Article  Google Scholar 

  17. Kim TI, Han JH, Lee IS, Lee KH, Shin MC, Choi BB. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and citotoxicity. Biomed Mater Eng. 1997;7:253–63.

    CAS  PubMed  Google Scholar 

  18. Khan MA, Williams RL, Williams DF. In vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117–26.

    CAS  Article  PubMed  Google Scholar 

  19. Okazaki Y, Ito Y, Kyo K, Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng A. 1996;213:138–47.

    Article  Google Scholar 

  20. Rao S, Okazaki Y, Tateishi T, Ushida T, Ito Y. Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3–E1 cells. Mater Sci Eng C. 1997;4:311–4.

    Article  Google Scholar 

  21. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Tech Adv Mater. 2003;4:445–54.

    CAS  Article  Google Scholar 

  22. He G, Eckert J, Dai QL, Sui ML, Loser W, Hagiwara M, Ma E. Nanostructured Ti-based multi-component alloys with potential for biomedical applications. Biomaterials. 2003;24:5115–20.

    CAS  Article  PubMed  Google Scholar 

  23. Ho WF, Ju CP, Chern Lin JH. Structure and properties of cast binary Ti–Mo alloys. Biomaterials. 1999;20:2115–22.

    CAS  Article  PubMed  Google Scholar 

  24. Godley R, Starosvetsky D, Gotman I. Corrosion behaviour of a low modulus β-Ti-45%Nb alloy for use in medical implants. J Mater Sci Mater Med. 2006;17:63–7.

    CAS  Article  PubMed  Google Scholar 

  25. Cremasco A, Osorio WR, Freire CMA, Garcia A, Caram R. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses. Electrochim Acta. 2008;53:4867–74.

    CAS  Article  Google Scholar 

  26. Cai Z, Koike M, Sato H, Brezner M, Guo Q, Komatsu M, Okuno O, Okabe T. Electrochemical characterization of cast Ti-Hf binary alloys. Acta Biomater. 2005;1:353–6.

    CAS  Article  PubMed  Google Scholar 

  27. Gordin DM, Delvat E, Chelariu R, Ungureanu G, Besse M, Laille D, Gloriant T. Characterization of Ti-Ta alloys synthesized by cold crucible levitation melting. Adv Eng Mater. 2008;10:714–9.

    CAS  Article  Google Scholar 

  28. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–42.

    Article  PubMed  Google Scholar 

  29. Alvez Rezende MCR, Rosifini Alvez AP, Codaro EN, Matsumoto Dutra CA. Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. J Mater Sci Mater Med. 2007;18:149–54.

    Article  Google Scholar 

  30. Oliveira NTC, Gustaldi AC. Electrochemical behaviour of Ti-Mo alloys applied as biomaterial. Corros Sci. 2008;50:938–45.

    CAS  Article  Google Scholar 

  31. Oliveira NTC, Gustaldi AC. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405.

    CAS  Article  PubMed  Google Scholar 

  32. Kumar S, Sankara Narayanan TSN. Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dent. 2008;36:500–7.

    CAS  Article  PubMed  Google Scholar 

  33. Bartáková S, Prachár P, Kudrman J, Březina V, Podhorná B, Černochová P, Vaněk J, Strecha J. New titanium β-alloys for dental implantology and their laboratory-based assays of biocompatibility. Scr Medica. 2009;82:76–82.

    Google Scholar 

  34. Holland RI. Corrosion testing by potentiodynamic polarization in various electrolytes. Dent Mater. 1992;8:241–5.

    CAS  Article  PubMed  Google Scholar 

  35. McCabe JF. Applied dental materials. 7th ed. Oxford: Blackwell Science; 1990.

    Google Scholar 

  36. Gloriant T, Texier F, Prima G, Laillé D, Gordin DM, Thibon I, Ansel D. Synthesis and phase transformations of beta metastable Ti-based alloys containing biocompatible Ta, Mo and Fe beta-stabilizer elements. Adv Eng Mater. 2006;8–10:961–5.

    Article  Google Scholar 

  37. Fusayama T, Katayori T, Nomoto S. Corrosion of gold and amalgam placed in contact with each other. J Dent Res. 1963;42:1183–97.

    CAS  PubMed  Google Scholar 

  38. Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H. Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J Mater Sci Mater Med. 1998;9:567–74.

    CAS  Article  PubMed  Google Scholar 

  39. Cheng X, Roscoe SG. Corrosion behaviour of titanium in the presence of calcium phosphate and serum proteins. Biomaterials. 2005;26:7350–6.

    CAS  Article  PubMed  Google Scholar 

  40. Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6Al-4 V alloy immersed in a simulated plasma solution. J Biomed Mater Res A. 2007;81:531–43.

    PubMed  Google Scholar 

  41. Raistrick ID, MacDonald JR, Francschetti DR. Impedance Spectroscopy Emphasizing Solid Materials and Systems. New York: Wiley; 1987.

    Google Scholar 

  42. Lavos-Valereto IC, Wolynec S, Ramires I, Guastaldi AC, Costa I. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti6Al7Nb alloy in Hank′s solution. J Mater Sci Mater Med. 2004;15:55–9.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romeu Chelariu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mareci, D., Chelariu, R., Dan, I. et al. Corrosion behaviour of β-Ti20Mo alloy in artificial saliva. J Mater Sci: Mater Med 21, 2907–2913 (2010). https://doi.org/10.1007/s10856-010-4147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4147-9

Keywords

  • Electrochemical Impedance Spectroscopy
  • Passive Film
  • Potentiodynamic Polarization
  • Corrosion Current Density
  • Artificial Saliva