Skip to main content
Log in

Functionalization of electrospun fibers of poly(ε-caprolactone) with star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) for neuronal cell guidance

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Microfibers produced with electrospinning have recently been used in tissue engineering. In the development of artificial implants for nerve regeneration they are of particular interest as guidance structures for cell migration and axonal growth. Using electrospinning we produced parallel-orientated biocompatible fibers in the submicron range consisting of poly(ε-caprolactone) (PCL) and star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) (sPEG). Addition of the bioactive peptide sequence glycine-arginine-glycine-aspartate-serine (GRGDS) or the extracellular matrix protein fibronectin to the electrospinning solution resulted in functionalized fibers. Surface characteristics and biological properties of functionalized and non-functionalised fibers were investigated. Polymer solutions and electrospinning process parameters were varied to obtain high quality orientated fibers. A polymer mixture containing high molecular weight PCL, PCL-diol, and sPEG permitted a chemical reaction between hydroxyl groups of the diol and isocyanante groups of the sPEG. Surface analysis demonstrated that sPEG at the fiber surface minimized protein adhesion. In vitro experiments using dorsal root ganglia explants showed that the cell repellent property of pure PCL/sPEG fibers was overcome by functionalization either with GRGDS peptide or fibronectin. In this way cell migration and axonal outgrowth along fibers were significantly increased. Thus, functionalized electrospun PCL/sPEG fibers, while preventing non-specific protein adsorption, are a suitable substrate for biological and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DAPI:

4,6-Diamidino-2-phenylindole dihydrochloride

DCM:

Dichloromethane

DIV:

Days in vitro

DMEM:

Dulbecco’s modified eagle medium

DMSO:

Dimethyl sulfoxide

DRG:

Dorsal root ganglia

ECM:

Extracellular matrix

FCS:

Fetal calf serum

GRGDS:

One letter code of the peptide sequence GlyArgGlyAspSer

Mw :

Molecular weight

NF200:

Neurofilament 200 kDa

NGS:

Normal goat serum

NMP:

N-Methylpyrrilidone

PBS:

Phosphate buffer saline

PCL:

Poly(ε-caprolactone)

PCL-ol:

PCL diol

PEG:

Poly(ethylene glycol)

PNS:

Peripheral nervous system

S100:

Protein antibody, marker for Schwann cells

SC:

Schwann cells

SEM:

Scanning electron microscopy

sPEG:

Star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol)

THF:

Tetrahydrofuran

TBS-T:

Tris-buffered saline with 1% Triton-X 100

wt%:

Weight percent

XPS:

X-ray photoelectron spectroscopy

References

  1. Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B. Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials. 2006;27:1425–36.

    Article  CAS  PubMed  Google Scholar 

  2. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials. 2007;28(19):3012–25.

    Article  CAS  PubMed  Google Scholar 

  3. Smeal RM, Rabbitt R, Biran R, Tresco PA. Substrate curvature influences the direction of nerve outgrowth. Ann Biomed Eng. 2005;33(3):376–82.

    Article  PubMed  Google Scholar 

  4. Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.

    Article  CAS  Google Scholar 

  5. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    Article  CAS  Google Scholar 

  6. Klinkhammer K, Seiler N, Grafahrend D, Gerardo-Nava J, Mey J, Brook GA, Möller M, Dalton PD, Klee D. Deposition of electrospun fibers on reactive substrates for in vitro investigations. Tissue Eng. 2009;15(1):77–85.

    CAS  Google Scholar 

  7. Horbett TA. The role of adsorbed proteins in tissue response to biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. San Diego: Elsevier; 2004. p. 237–40.

    Google Scholar 

  8. Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. PNAS. 1998;95:8841–6.

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Johnson R, Harrison D, Tucci M, Tsao A, Lemos M, Puckett A, Hughes JL, Benghuzzi H. Fibrous capsule formation in response to ultrahigh molecular weight polyethylene treated with peptides that influence adhesion. Biomed Sci Instrum. 1997;34:47–52.

    CAS  PubMed  Google Scholar 

  10. Jeon SI, Lee JH, Andrade JD, De Gennes PG. Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci. 1991;142:149–58.

    Article  CAS  Google Scholar 

  11. Sharma S, Johnson RW, Desai TA. Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir. 2004;20(2):348–56.

    Article  CAS  PubMed  Google Scholar 

  12. Grafahrend D, Calvet JL, Klinkhammer K, Salber J, Dalton PD, Moller M, Klee D. Control of protein adsorption on functionalized electrospun fibers. Biotechnol Bioeng. 2008;101(3):609–21.

    Article  CAS  PubMed  Google Scholar 

  13. Gasteier P, Reska A, Schulte P, Salber J, Offenhausser A, Moeller M, Groll J. Surface grafting of PEO-based star-shaped molecules for bioanalytical and biomedical applications. Macromol Biosci. 2007;7(8):1010–23.

    Article  CAS  PubMed  Google Scholar 

  14. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  CAS  PubMed  Google Scholar 

  15. Goetz H, Beginn U, Bartelink CF, Grunbauer HJM, Möller M. Preparation of isophorone diisocyanate terminated star polyethers. Macromol Mater Eng. 2002;287(4):223–30.

    Article  Google Scholar 

  16. Grafahrend D, Calvet JL, Salber J, Dalton PD, Moeller M, Klee D. Biofunctionalized poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanofibers for tissue engineering. J Mater Sci Mater Med. 2008;19(4):1479–84.

    Article  CAS  PubMed  Google Scholar 

  17. Groll J, Fiedler J, Engelhard E, Ameringer T, Tugulu S, Klok HA, Brenner RE, Moeller M. A novel star PEG-derived surface coating for specific cell adhesion. J Biomed Mater Res Part A. 2005;74A(4):607–17.

    Article  CAS  Google Scholar 

  18. Grafahrend D, Gasteier P, Heffels K-H, Beer M, Dalton PD, Moeller M, Groll J. Transforming the surface chemistry of degradable polymer scaffolds with a reactive hydrophilic monomer additive. Submitted.

  19. Hsu C-M, Shivkumar S. Nano-sized beads and porous fiber constructs of poly(ε-caprolactone) produced by electrospinning. J Mater Sci. 2004;39(9):3003–13.

    Article  CAS  ADS  Google Scholar 

  20. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost. 1995;35(2–3):151–60.

    Article  CAS  Google Scholar 

  21. Liu HQ, Hsieh YL. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys. 2002;40:2119–29.

    Article  CAS  ADS  Google Scholar 

  22. Andrady AL. Science and technology of polymer nanofibers. Hoboken: Wiley; 2008. p. 94.

    Book  Google Scholar 

  23. Bölgen N, Menceloglu YZ, Acatay K, Vargel I, Piskin E. In vitro and in vivo degradation of non-woven materials made of poly(ε-caprolactone) and nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed. 2005;16(12):1537–55.

    Article  PubMed  Google Scholar 

  24. Park JB, Yiu G, Kaneko S, Wang J, Chang J, He Z. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron. 2005;45:345–51.

    Article  CAS  PubMed  Google Scholar 

  25. Vyas AA, Blixt O, Paulson JC, Schnaar RL. Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro. J Biol Chem. 2005;280(16):16305–10.

    Article  CAS  PubMed  Google Scholar 

  26. Filbin MT, Qiu J, Cai D. Glial influences on axonal regeneration. In: Jessen KR, Richardson WD, editors. Glial cell development-basic principles and clinical relevance. Oxford: Oxford University Press; 2001. p. 279–98.

    Google Scholar 

  27. Lisak RP, Skundric D, Bealmear B, Ragheb S. The role of cytokines in Schwann cell damage, protection, and repair. J Infect Dis. 1997;176:S173–9.

    Article  CAS  PubMed  Google Scholar 

  28. Schense JC, Bloch J, Aebischer P, Hubbell JA. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol. 2000;18:415–9.

    Article  CAS  PubMed  Google Scholar 

  29. Tong YW, Shoichet MS. Enhancing the neuronal interaction on fluoropolymer surfaces with mixed peptides or spacer group linkers. Biomaterials. 2001;22:1029–34.

    Article  CAS  PubMed  Google Scholar 

  30. Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo M-M, Li S. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 2007;7(7):2122–8.

    Article  CAS  ADS  PubMed  Google Scholar 

  31. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3.

    Article  CAS  PubMed  Google Scholar 

  32. Akiyama SK, LaFlamme SE. Bioadhesion and cell behavior. Colloids Surf B Biointerfaces. 1994;2:241–50.

    Article  CAS  Google Scholar 

  33. Zhang Z, Yoo R, Wells M, Beebe TP Jr, Biran R, Tresco P. Neurite outgrowth on well-characterized surfaces: preparation and characterization of chemically and spatially controlled fibronectin and RGD substrates with good bioactivity. Biomaterials. 2005;26:47–61.

    Article  PubMed  Google Scholar 

  34. Schlosshauer B, Dreesmann L, Schaller H-E, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59:470–8.

    Article  Google Scholar 

  35. Möllers S, Heschel I, Damink LH, Schugner F, Deumens R, Muller B, Bozkurt A, Nava JG, Noth J, Brook GA. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for the nerve tissue repair. Tissue Eng Part A. 2009;15:461–72.

    Article  PubMed  Google Scholar 

  36. Yu TT, Shoicht MS. Guided cell adhesion and outgrowth in peptide-modified channels for tissue engineering. Biomaterials. 2005;26:1507–14.

    Article  CAS  PubMed  Google Scholar 

  37. Kim YT, Haftel VK, Kumar S, Bellamkonda RV. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29:3117–27.

    Article  CAS  PubMed  Google Scholar 

  38. Lundborg G, Dahlin L, Dohi D, Kanje M, Terada N. A new type of “bioartificial” nerve graft for bridging extended defects in nerves. J Hand Surg (British and European Volume). 1997;22B:299–303.

    Article  Google Scholar 

  39. Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo Y, Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysical evaluation of regenerated nerves. Brain Res. 2000;868:315–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marie Pradella for help with evaluating the cell experiments. Kristin Michael and Bernd Hoffmann kindly allowed us to use their equipment for making composite photographs of DRG explants. This work was supported by a grant from the Interdisciplinary Centre for Clinical Research “BIOMAT” within the faculty of Medicine at Aachen University (RWTH) (TV B111) and by DFG-Graduiertenkolleg 1035 “Biointerface”. Julia Bockelmann was supported by a Marie-Curie EST grant from the EU (EURON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Klee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkhammer, K., Bockelmann, J., Simitzis, C. et al. Functionalization of electrospun fibers of poly(ε-caprolactone) with star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) for neuronal cell guidance. J Mater Sci: Mater Med 21, 2637–2651 (2010). https://doi.org/10.1007/s10856-010-4112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4112-7

Keywords

Navigation