Skip to main content

Advertisement

Log in

Biofunctionality of MBCP ceramic granules (TricOs™) plus fibrin sealant (Tisseel®) versus MBCP ceramic granules as a filler of large periprosthetic bone defects: an investigative ovine study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We aimed to quantify bone colonization toward an untreated titanium implant with primary stability following filling of the defect with micromacroporous biphasic calcium phosphate (MBCP) granules (TricOs™) or MBCP granules mixed with fibrin sealant (Tisseel®). Medial arthrotomy was performed on the knees of 20 sheep to create a bone defect (16 mm deep; 10 mm diameter), followed by anchorage of a titanium screw. Defects were filled with TricOs or TricOs–Tisseel granules, a perforated MBCP washer, a titanium washer and titanium screw. Sheep were euthanized at 3, 6, 12 and 26 weeks. From Week 12 onwards, the percentage of bone in contact with the 8 mm anchorage part of the screw increased in both groups, confirming its primary stability. At 26 weeks, whereas bone colonization was similar in both groups, biodegradation of ceramic was more rapid in the TricOs–Tisseel group (P = 0.0422). The centripetal nature of bone colonization was evident. Bone contact with the titanium implant surface was negligible. In conclusion, the use of a model that reproduces a large metaphyseal bone defect around a titanium implant with primary stability, filled with a mixture of either TricOs ceramic granules or TricOs granules mixed with Tisseel fibrin sealant, suggests that the addition of fibrin to TricOs enhances bone filling surgical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Delmas PD, Anderson M. Launch of the bone and joint decade 2000–2010. Osteoporos Int. 2000;11:95–7.

    Article  CAS  PubMed  Google Scholar 

  2. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981;157:259–78.

    CAS  PubMed  Google Scholar 

  3. De Groot K. Ceramics of calcium phosphate: preparation and properties. In: Bioceramics of calcium phosphates. Boca Raton: CRC Press; 1983. p. 100–14.

  4. Aoki H, Kato K. Application of apatite to biomaterials. Jpn Ceram Soc. 1975;10:469–78.

    CAS  Google Scholar 

  5. Metsger SD, Driskell TD, Paulsrud JR. Tricalcium phosphate ceramic: a resorbable bone implant: review and current uses. J Am Dent Assoc. 1982;105:1035–48.

    CAS  PubMed  Google Scholar 

  6. LeGeros RZ. Calcium phosphate materials in restorative dentistry. Adv Dent Res. 1988;2:164–83.

    CAS  PubMed  Google Scholar 

  7. LeGeros RZ, Nery E, Daculsi G, Lynch K, Kerebel B. In vivo transformation of biphasic calcium phosphate of varying b-TCP/HA ratios: ultrastructural characterization. In: Third world biomaterials congress; 1988 (abstract no. 35).

  8. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics: ultrastructural and physico-chemical characterization. J Biomed Mater Res. 1989;23:883–94.

    Article  CAS  PubMed  Google Scholar 

  9. LeGeros RZ, Daculsi G. In vivo transformation of biphasic calcium phosphate ceramics: ultrastructural and physicochemical characterization. In: Yamamuro N, Hench L, Wilson J, editors. Handbook of bioactive ceramics, vol 2. Boca Raton: CRC Press; 1990. p. 1728.

  10. Daculsi G, Passuti N. Effect of macroporosity for osseous substitution of calcium phosphate ceramic. Biomaterials. 1990;11:86–7.

    CAS  PubMed  Google Scholar 

  11. Daculsi G, Passuti N, Martin S, Deudon C, LeGeros RZ. Macroporous calcium phosphate ceramic for long bone surgery in human and dogs. J Biomed Mater Res. 1990;24:379–96.

    Article  CAS  PubMed  Google Scholar 

  12. Bagot d’Arc M, Daculsi G, Emam N. Biphasic ceramics and fibrin sealant for bone reconstruction in ear surgery. Ann Otol Rhinol Laryngol. 2004;113:711–20.

    PubMed  Google Scholar 

  13. Trecant M, Delecrin J, Royer J, Goyenvalle E, Daculsi G. Mechanical changes in macroporous calcium phosphate ceramics after implantation in bone. Clin Mater. 1994;15:233–40.

    Article  Google Scholar 

  14. Nery EB, LeGeros RZ, Lynch KL, Kalbfleisch J. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β-TCP in periodontal osseous defects. J Periodontol. 1992;63:729–35.

    CAS  PubMed  Google Scholar 

  15. Gouin F, Delecrin J, Passuti N, Touchais S, Poirier P, Bainvel JV. Comblement osseux par céramique phosphocalcique biphasée macroporeuse: a propos de 23 cas. Rev Chir Orthop. 1995;81:59–65. [In French].

    CAS  PubMed  Google Scholar 

  16. Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, et al. Synthetic porous ceramic compared with autograft in scoliosis surgery A prospective, randomized study of 341 patients. J Bone Joint Surg Br. 1998;80:13–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cavagna R, Daculsi G, Bouler J-M. Macroporous biphasic calcium phosphate: a prospective study of 106 cases in lumbar spine fusion. J Long Term Eff Med Implants. 1999;9:403–12.

    CAS  PubMed  Google Scholar 

  18. Soares EJC, Franca VP, Wykrota L, Stumpf S. Clinical evaluation of a new bioaceramic opthalmic implant. In: LeGeros RZ, LeGeros JP, editors. Bioceramics, vol 11. Singapore: World Scientific; 1998. p. 633–6.

    Google Scholar 

  19. Wykrota LL, Garrido CA, Wykrota FHI. Clinical evaluation of biphasic calcium phosphate ceramic use in orthopaedic lesions. In: LeGeros RZ, LeGeros JP, editors. Bioceramics, vol 11. Singapore: World Scientific; 1998. p. 641–4.

    Google Scholar 

  20. Malard O, Guicheux J, Bouler J-M, et al. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone. 2005;36:323–30.

    Article  CAS  PubMed  Google Scholar 

  21. Passuti N, Delecrin J, Daculsi G. Bone substitution for spine fusion. In: Williams DF, Christel P, editors. Implants in orthopaedic surgery. Kent, England: Edward Arnold; 1992.

    Google Scholar 

  22. Delecrin J, Takahashi S, Gouin F, Passuti N. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine. 2000;25:563–9.

    Article  CAS  PubMed  Google Scholar 

  23. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19:1473–8.

    Article  CAS  PubMed  Google Scholar 

  24. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14:195–200.

    Article  CAS  PubMed  Google Scholar 

  25. Daculsi G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. In: Advances in acience and technology. Switzerland: Trans Tech Publications; 2006. p. 9–13.

  26. Daculsi G, Weiss P, Bouler J-M, Gauthier O, Aguado E. Biphasic calcium phosphate hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone. 1999;25:59–61.

    Article  Google Scholar 

  27. Daculsi G, Khairoun I, LeGeros RZ, et al. Bone ingrowth at the expense of a novel macroporous calcium phosphate cement. Key Eng Mater. 2006;330–2:811–4.

    Google Scholar 

  28. Khairoun I, LeGeros RZ, Daculsi G, Bouler JM, Guicheux J, Gauthier O. Macroporous, resorbable and injectable calcium phosphate-based cements (MCPC) for bone repair, augmentation, regeneration and osteoporosis treatment; 2004. Provisional patent no. 11/054,623.

  29. Daculsi G, Layrolle P. Osteoinductive properties of micro-macroporous biphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–6:1005–8.

    Article  Google Scholar 

  30. Le Nihouannen D, Daculsi G, Saffarzadeh A, et al. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005;36:1086–93.

    Article  PubMed  Google Scholar 

  31. Radosevich M, Goubran HI, Burnouf T. Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox Sang. 1997;72:133–43.

    Article  CAS  PubMed  Google Scholar 

  32. Dunn CJ, Goa KL. Fibrin sealant: a review of its use in surgery and endoscopy. Drugs. 1999;58:863–6.

    Article  CAS  PubMed  Google Scholar 

  33. Mosher DF, Schad PE. Cross linking of fibronectin to collagen by blood coagulation Factor XIIIa. J Clin Invest. 1979;64:781–7.

    Article  CAS  PubMed  Google Scholar 

  34. Rousou J, Levitsky S, Gonzalez-Lavin L, et al. Randomized clinical trial of fibrin sealant in patients undergoing resternotony or reoperation after cardiac operations. A multicenter study. J Thorac Cardiovasc Surg. 1989;97:194–203.

    CAS  PubMed  Google Scholar 

  35. Wittkampf AR. Fibrin glue as cement for HA-granules. J Craniomaxillofac Surg. 1989;17:179–81.

    CAS  PubMed  Google Scholar 

  36. Marini E, Valdinucci F, Silvestrini G, et al. Morphological investigations on bone formation in hydroxyapatite-fibrin implants in human maxillary and mandibular bone. Cells Mater. 1994;4:231–46.

    Google Scholar 

  37. Helgerson SL, Seelich T, DiOrio JP, et al. Fibrin. In: Bowlin GL, Wnek G, editors. Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare; 2004. p. 1–8.

  38. Nakamura K, Koshino T, Saito T. Osteogenic response of the rabbit femur to a hydroxyapatite thermal decomposition product–fibrin sealant mixture. Biomaterials. 1998;19:1901–7.

    Article  CAS  PubMed  Google Scholar 

  39. Koolwijk P, van Erck MG, de Vree WJ, et al. Cooperative effect of TNF alpha, bFGF, and VGEF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol. 1996;132:1177–88.

    Article  CAS  PubMed  Google Scholar 

  40. Takei A, Tashiro Y, Nakashima Y, Sueishi K. Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel. In Vitro Cell Dev Biol Anim. 1995;31:467–72.

    Article  CAS  PubMed  Google Scholar 

  41. Schmoekel H, Schense JC, Weber FE, et al. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J Orthop Res. 2004;22:376–81.

    Article  CAS  PubMed  Google Scholar 

  42. Bauer TW, Muschler GF. Bone grafts materials. An overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.

    Article  PubMed  Google Scholar 

  43. Le Guehennec L, Goyenvalle E, Aguado E, et al. MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth. J Mater Sci Mater Med. 2005;16:29–35.

    Article  PubMed  Google Scholar 

  44. Le Nihouannen D, Saffarzadeh A, Gauthier O, et al. Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. J Mater Sci Mater Med. 2008;19:667–75.

    Article  CAS  PubMed  Google Scholar 

  45. Saffarzadeh A, Gauthier O, Bilban M, Bagot D’Arc M, Daculsi G. Comparison of two bone substitute biomaterials consisting of a mixture of fibrin sealant (Tisseel®) and MBCP (TricOs®) with autograft in sinus lift surgery in sheep. Clin Oral Implant Res. 2009;20:1133–9.

    Article  Google Scholar 

  46. TRICOS Resorbable Bone Substitute. Instructions for use. Available at http://www.baxterbiosurgery.com/en_EU/downloads/ifu_tricos.pdf. Accessed 14 February 2010.

  47. Kania RE, Meunier A, Hamadouche M, Sedel L, Petite H. Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res. 1998;43:38–45.

    Article  CAS  PubMed  Google Scholar 

  48. Durand M, Chauveaux D, Moinard M, et al. Tricos® and fibrin sealant combined for bone defect filling: from preclinical tests to propspective clinical study. Preliminary human data. Key Eng Mater. 2008;361–3:1335–8.

    Article  Google Scholar 

  49. Reppenhagen S, Raab P, Eulert J, Noth U. TRICOS bone substitute—one-year experience with fibrin sealant biomaterial composite in the use of benign bone defects [abstract]. In: Proceedings of the 2nd international conference on strategies in tissue engineering. Cytotherapy. 2006;8(Suppl 2):1–74.

  50. Abiraman S, Varma HK, Umashankar PR, John A. Fibrin glue as an osteoconductive protein in a mouse model. Biomaterials. 2002;23:3023–31.

    Article  CAS  PubMed  Google Scholar 

  51. Arnaud E, Morieux M, Wybier M, de Vernejoul MC. Potentiation of transforming growth factor (TGF-beta 1) by natural coral and fibrin in a rabbit cranioplasty model. Calcif Tissue Int. 1994;54:493–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from ANR and RNTS, Biomatlante France and Baxter Bioscience. The authors thank C. Boucard, S. Madec, B. Pilet, and I. Pavageau for their technical assistance. We also wish to thank Maurice Bagot d’Arc of Baxter BioSurgery Europe for his helpful assistance in the management of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Goyenvalle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyenvalle, E., Aguado, E., Pilet, P. et al. Biofunctionality of MBCP ceramic granules (TricOs™) plus fibrin sealant (Tisseel®) versus MBCP ceramic granules as a filler of large periprosthetic bone defects: an investigative ovine study. J Mater Sci: Mater Med 21, 1949–1958 (2010). https://doi.org/10.1007/s10856-010-4043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4043-3

Keywords

Navigation