Skip to main content

Advertisement

Log in

Peptide aptamers against titanium-based implants identified through phage display

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Commercially pure titanium (cp-Ti) is widely used in the field of long-term clinical oral implantology owing to its ability to allow close bone-implant apposition. The optimization of its function based on artificial proteins has become a key issue in the development of improved cp-Ti implants. Here, we set out to identify peptide aptamers with preferential adsorption towards titanium-based implants through the phage display methodology. Fifteen sequences were selected in the third round of biopanning. One sequence, ATWVSPY (named TBP1), had a 40% repetition rate and exhibited the strongest binding affinity to cp-Ti disks. Ten sequences were selected in the fourth round, among which the repetition rate is 80% for TBP1 and 20% for TBP2 (GVGLPHT). The peptide aptamers against cp-Ti disks can provide an alternative method of functional coating for biomaterial surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kashiwagi K, Tsuji T, Shiba K. Directional BMP-2 for functionalization of titanium surfaces. Biomaterials. 2009;30:1166–75. doi:10.1016/j.biomaterials.2008.10.040.

    Article  CAS  PubMed  Google Scholar 

  2. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54. doi:10.1016/j.dental.2006.06.025.

    Article  CAS  PubMed  Google Scholar 

  3. Schuler M, Trentin D, Textor M, Tosatti SG. Biomedical interfaces: titanium surface technology for implants and cell carriers. Nanomed. 2006;1:449–63. doi:10.2217/17435889.1.4.449.

    Article  CAS  Google Scholar 

  4. Nakamura HK, Butz F, Saruwatari L, Ogawa T. A role for proteoglycans in mineralized tissue-titanium adhesion. J Dent Res. 2007;86:147–52. doi:10.1177/154405910708600208.

    Article  CAS  PubMed  Google Scholar 

  5. Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants. J Mater Chem. 2008;18:2404–14. doi:10.1039/b715355b.

    Article  CAS  Google Scholar 

  6. Kroese-Deutman HC, Van Den Dolder J, Spauwen PHM. Influence of RGD-loaded titanium implants on bone formation in vivo. Tissue Eng. 2005;11:1867–75. doi:10.1089/ten.2005.11.1867.

    Article  CAS  PubMed  Google Scholar 

  7. Fujisawa R, Mizumo M, Nodasaka Y, Kuboki Y. Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu7-Pro-Arg-Asp-Thr) containing two functional sequences of bone sialoprotein. Matrix Biol. 1997;16:21–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials. 2007;28:383–92. doi:10.1016/j.biomaterials.2006.08.031.

    Article  CAS  PubMed  Google Scholar 

  9. Gronewold TM, Baumgartner A, Weckmann A, Knekties J, Egler C. Selection process generating peptide aptamers and analysis of their binding to the TiO2 surface of a surface acoustic wave sensor. Acta Biomater. 2009;5:794–800. doi:10.1016/j.actbio.2008.09.014.

    Article  CAS  PubMed  Google Scholar 

  10. Matsui T, Matsukawa N, Iwahori K, Sano K, Shiba K, Yamashita I. Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous materials affinity peptides. Langmuir. 2007;23:1615–8. doi:10.1021/la061318t.

    Article  CAS  PubMed  Google Scholar 

  11. Sano K, Shiba K. A hexapeptide motif that binds to the surface of titanium. J Am Chem Soc. 2003;125:14234–5. doi:10.1021/ja038414q.

    Article  CAS  PubMed  Google Scholar 

  12. Oya K, Tanaka Y, Saito H, Kurashima K, Nogi K, Tsutsumi H, et al. Calcification by MC3T3–E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials. 2009;30:1281–6. doi:10.1016/j.biomaterials.2008.11.030.

    Article  CAS  PubMed  Google Scholar 

  13. Segvich SJ, Smith HC, Kohn DH. The adsorption of preferential binding peptides to apatite-based materials. Biomaterials. 2009;30:1287–98. doi:10.1016/j.biomaterials.2008.11.008.

    Article  CAS  PubMed  Google Scholar 

  14. Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M. Regulation of in vitro calcium phosphate mineralization by combinatorial selected hydroxyapatite-binding peptides. Biomacromolecules. 2008;9:966–73. doi:10.1021/bm701037X..

    Article  CAS  PubMed  Google Scholar 

  15. Sarikaya M, Tamerler C, Jen AY, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater. 2003;2:577–85. doi:10.1038/nmat964.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Sarikaya M, Tamerler C, Schwartz DT, Baneyx F. Materials assembly and formation using engineered polypeptides. Ann Rev Mater Res. 2004;34:373–408. doi:10.1146/annurev.matsci.34.040203.121025.

    Article  CAS  ADS  Google Scholar 

  17. Brown S, Sarikaya M, Johnson E. Genetic analysis of crystal growth. J Mol Biol. 2000;299:725–32. doi:10.1006/jmbi.2000.3682.

    Article  CAS  PubMed  Google Scholar 

  18. Donatan S, Yazici H, Bermek H, Sarikaya M, Tamerler C, Urgen M. Physical elution in phage display selection of inorganic-binding peptides. Mater Sci Eng C. 2009;29:14–9. doi:10.1016/j.msec.2008.05.003.

    Article  CAS  Google Scholar 

  19. Thai CK, Dai HX, Sastry MSR, Sarikaya M, Schwartz DT, Baneyx F. Identification and characterization of Cu2O- and ZnO binding polypeptides by E. coli cell surface display: toward an understanding of metal oxide binding. Biotechnol Bioeng. 2004;87:129–37. doi:10.1002/bit.20149.

    Article  CAS  PubMed  Google Scholar 

  20. Hsu SH, Liu BS, Lin WH, Chiang HC, Huang SC, Cheng SS. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface. Bio-Med Mater Eng. 2007;17:53–68.

    CAS  Google Scholar 

  21. Kawahara H, Mimura Y, Oki M. In vitro study on cell adhesive strength to titanium with anodic oxidation and nitridation. In: Kawahara H, editor. Oral implantolody and biomaterials. Amsterdam: Elsevier Science Publishers BV; 1989. p. 169–76.

    Google Scholar 

  22. Mante M, Daniels B, Golden E, Diefenderfer D, Reilly G, Leboy PS. Attachment of human marrow stromal cells to titanium surfaces. J Oral Implantol. 2003;29:66–72. doi:10.1563/1548-1336(2003)029<0066:AOHMSC>2.3.CO;2.

    Article  PubMed  Google Scholar 

  23. Mante FK, Little K, Mante MO, Rawle C, Baran GR. Oxidation of titanium, RGD peptide attachment, and matrix mineralization rat bone marrow stromal cells. J Oral Implantol. 2004;30:343–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by National Science Foundation of China which was conferred to Dr.B.Zhou (NSFC No.30700957). The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology in China for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Mao, J., Zhou, B. et al. Peptide aptamers against titanium-based implants identified through phage display. J Mater Sci: Mater Med 21, 1103–1107 (2010). https://doi.org/10.1007/s10856-009-3970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3970-3

Keywords

Navigation