Skip to main content
Log in

The antimicrobial effect of open-cell silver foams

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Open-cell silver foams with various pore sizes (494, 337, 126 and 39 μm) and porosity (60, 70 and 80 vol%) were produced using a powder-based replication method. It was found that the foams have strong microbial reduction efficiency. The antimicrobial effect of the foams is much stronger on gram-negative bacterium (Escherichia coli) than gram-positive bacterium (Staphylococcus aureus). With equivalent volume addition of NaCl particles, higher antimicrobial effect was found for Ag foams with larger pore size. The difference on antimicrobial effect between silver foams with various pore sizes is smaller when porosity of the foams increases from 60 to 80%. No correlation between particle sizes of NaCl and bacterial growth inhibition was found. In addition, effect of particle sizes and pore sizes of the foams on the bacterial growth inhibition is not as much as the effect of particle addition. It is expected that the positively charged Ag ions released from the surface of Ag foam structure would alter the morphology of bacteria strains in which disruption of cell wall and eventually damage were implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brothers AH, Scheunemann R, DeFouw JD, Dunand DC. Processing and structure of open-celled amorphous metal foams. Scr Mater. 2005;52:335–9.

    Article  CAS  Google Scholar 

  2. Pollien A, Scheunemann R, DeFouw JD, Dunand DC. Graded open-cell aluminium foam core sandwich beams. Mater Sci Eng A. 2005;404:9–18.

    Article  Google Scholar 

  3. Nieh TG, Higashi K, Wadsworth J. Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater Sci Eng A. 2000;283(1–2):105–10.

    Google Scholar 

  4. Despois JF, Mortensen A. Permeability of open-pore microcellular materials. Acta Mater. 2005;53:1381–8.

    Article  CAS  Google Scholar 

  5. Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46(6):559–632.

    Article  CAS  Google Scholar 

  6. Conde Y, Despois JF, Goodall R, Marmottant A, Salvo L, San Marchi C, et al. Replication processing of highly porous materials. Adv Eng Mater. 2006;8(9):795–803.

    Article  CAS  Google Scholar 

  7. Asavavisithchai S, Nisaratanaporn E. Fabrication of open-cell silver foams using a replication process. In: Lefebvre LP, Banhart J, Dunand D, editors. Porous metals and metallic foams. Pennsylvania: DEStech Publications; 2008. p. 185–8.

    Google Scholar 

  8. Grier N. Disinfection, sterilization and preservation. 3rd ed. Philadelphia: Lea & Febiger; 1983.

    Google Scholar 

  9. Russell AD, Hugo WB. Antimicrobial activity and action of silver. Prog Med Chem. 1994;31:351–70.

    Article  CAS  PubMed  Google Scholar 

  10. Richards RME. Antimicrobial action of silver nitrate. Microbios. 1981;31(124):83–91.

    CAS  PubMed  Google Scholar 

  11. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997;25(4):279–83.

    Article  CAS  PubMed  Google Scholar 

  12. Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005;51(5):956–60.

    Article  CAS  Google Scholar 

  13. Furr JR. Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect. 1994;27(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  14. An J, Wang D, Luo Q, Yuan X. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C. 2009;29(6):1984–9.

    Article  CAS  Google Scholar 

  15. Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym. 2008;72(1):43–51.

    Article  CAS  Google Scholar 

  16. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3):707–16.

    Article  CAS  PubMed  Google Scholar 

  17. Carja G, Kameshima Y, Nakajima A, Dranca C, Okada K. Nanosized silver-anionic clay matrix as nanostructured ensembles with antimicrobial activity. Int J Antimicrob Agents. 2009;34(6):534–9.

    Article  CAS  PubMed  Google Scholar 

  18. Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992;27(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  19. Gibbins B. The antimicrobial benefits of silver and the relevance of microlattice technology. OWM. 2003;49(6):5–6.

    Google Scholar 

  20. Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine. 2009;5(2):240–9.

    CAS  PubMed  Google Scholar 

  21. Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006;62(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Xiao B, Xu KW. Synthesis and characterization of Ag/Cu/HAP with platelet morphology. J Mater Sci Mater Med. 2009;20:785–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors sincerely thank Dr. E. Nisaratanaporn of Faculty of Engineering, Chulalongkorn University, for the supply of silver grains. The authors are also grateful for technical assistance with antimicrobial test by Mr. Choochart Warin of National Nanotechnology Center, National Science and Technology Development Agency, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asavavisithchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asavavisithchai, S., Oonpraderm, A. & Ruktanonchai, U.R. The antimicrobial effect of open-cell silver foams. J Mater Sci: Mater Med 21, 1329–1334 (2010). https://doi.org/10.1007/s10856-009-3969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3969-9

Keywords

Navigation