RGD-functionalisation of PLLA nanofibers by surface coupling using plasma treatment: influence on stem cell differentiation

  • Jürgen Rudolf Josef PalettaEmail author
  • Sarah Bockelmann
  • Andreas Walz
  • Christina Theisen
  • Joachim Heinz Wendorff
  • Andreas Greiner
  • Susanne Fuchs-Winkelmann
  • Markus Dietmar Schofer


The aim of this study was to functionalize the surface of synthetic poly-(l-lactic) (PLLA) nanofibers with RGD peptide, in order to promote growth and osteogenic differentiation of human mesenchymal stem cells (hMSC) in vitro. The cRGD was coupled onto PLLA nanofibers using oxygen plasma combined with EDC/sulfo-NHS activation. Matrices were seeded with hMSC and cultivated over a period of 22 days under growth conditions and analyzed during the course of cultivation. The plasma activation of PLLA nanofibers resulted in a reduction of hydrophobicity as well as a formation of carboxyl groups on the surface of the fibers. Furthermore, maximum load, but not young’s modulus was influenced by the treatment with oxygen plasma. When hMSC were cultured onto the cRGD functionalized scaffolds, cells showed no increased proliferation or cell density but an induction of genes associated with the osteoblast lineage. In brief, this study indicates that functional peptides of the extracellular matrix can be coupled onto PLLA nanofibers using plasma treatment in combination with EDC/sulfo-NHS treatment. These groups are accessible for the growing cell and mediate probably some osteoinductive properties of collagen nanofibers.


Contact Angle Osteocalcin PLLA Plasma Treatment Osteogenic Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, Grant No. BO 3065/1-1). We would like to thank M. Hellwig for SEM and Dr. F. Grolig for confocal fluorescence microscopy measurements.


  1. 1.
    Parry DA. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem. 1988;29:195–209.CrossRefPubMedGoogle Scholar
  2. 2.
    Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Venugopal J, Ma LL, Yong T, Ramakrishna S. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int. 2005;29:861–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Venugopal JR, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs. 2006;30:440–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 2005;1:377–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Gersbach Charles A, Byers Benjamin A, Pavlath Grace K, Guldberg Robert E, García AJ. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro. Biotechnol Bioeng. 2004;88:369–78.CrossRefPubMedGoogle Scholar
  7. 7.
    Shih Y-RV, Chen C-N, Tsai S-W, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells. 2006;24:2391–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Schofer MD, Boudriot U, Wack C, Leifeld I, Gräbedünkel C, Dersch R, et al. Influence of nanofibers on the growth and osteogenic differentiation of stem cells—a comparison of biological collagen nanofibers and synthetic PLLA fibers. J Mater Sci Mater Med. 2008;20(3):767–74.Google Scholar
  9. 9.
    Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol. 2004;2004: 24–34.Google Scholar
  10. 10.
    Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. 2001;129:133–8.PubMedGoogle Scholar
  11. 11.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.CrossRefPubMedGoogle Scholar
  12. 12.
    Bacakova L, Filova E, Kubies D, Machova L, Proks V, Malinova V, et al. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J Mater Sci Mater Med. 2007;18:1317–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Alvarez-Barreto JF, Sikavitsas VI. Improved mesenchymal stem cell seeding on RGD-modified poly(l-lactic acid) scaffolds using flow perfusion. Macromol Biosci. 2007;7:579–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Ho MH, Lee JJ, Fan SC, Wang DM, Hou LT, Hsieh HJ, et al. Efficient modification on PLLA by ozone treatment for biomedical applications. Macromol Biosci. 2007;7:467–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, et al. Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci. 2006;6:90–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Hsu SH, Chu WP, Lin YS, Chiang YL, Chen DC, Tsai CL. The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. J Biotechnol. 2004;111:143–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Dee KC, Rueger DC, Andersen TT, Bizios R. Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials. 1996;17:209–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann NY Acad Sci. 1999;875:24–35.CrossRefPubMedADSGoogle Scholar
  19. 19.
    Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem. 2000;1:107–14.CrossRefPubMedGoogle Scholar
  20. 20.
    He X, Ma J, Jabbari E. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir. 2008;24:12508–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Shin H, Temenoff JS, Bowden GC, Zygourakis K, Farach-Carson MC, Yaszemski MJ, et al. Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. Biomaterials. 2005;26:3645–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials. 2005;26:5991–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, et al. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res. 2004;Part A 71:25–34.CrossRefGoogle Scholar
  24. 24.
    Schofer M, Boudriot U, Bockelmann S, Walz A, Wendorff J, Greiner A, et al. Effect of direct RGD incorporation in PLLA nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med. 2009;20:1535–40.CrossRefPubMedGoogle Scholar
  25. 25.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMedADSGoogle Scholar
  26. 26.
    Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D, et al. Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr. 2005;12:245–57.CrossRefPubMedGoogle Scholar
  27. 27.
    Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem. 2002;85:737–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthr Cartil. 2001;9:112–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Boudriot U, Dersch R, Goetz B, Griss P, Greiner A, Wendorff JH. Elektrogesponnene Poly-L-Laktid-Nanofasern als resorbierbare Matrix fur Tissue-Engineering. Biomedizinische Technik. 2004;49:242–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Boudriot U, Dersch R, Greiner A, Wendorff JH. Electrospinning approaches toward scaffold engineering–a brief overview. Artif Organs. 2006;30:785–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Boudriot U, Goetz B, Dersch R, Greiner A, Wendorff HJ. Role of Electrospun Nanofibers in Stem Cell Technologies and Tissue Engineering. Macromol Symp. 2005;225:9–16.CrossRefGoogle Scholar
  33. 33.
    Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly(l-lactic acid) nanofibrous matrix. Biomaterials. 2008;29:3815–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim Hae-Won, Yu Hye-Sun, Lee H-H. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A. 2008;87A:25–32.CrossRefGoogle Scholar
  35. 35.
    Schofer MD, Boudriot U, Leifeld I, Sutterlin RI, Rudisile M, Wendorff JH, et al. Characterization of a PLLA-collagen I blend nanofiber scaffold with respect to growth and osteogenic differentiation of human mesenchymal stem cells. ScientificWorldJournal. 2009;9:118–29.CrossRefPubMedGoogle Scholar
  36. 36.
    Ibnabddjalil M, Loh IH, Chu CC, Blumenthal N, Alexander H, Turner D. Effect of surface plasma treatment on the chemical, physical, morphological, and mechanical properties of totally absorbable bone internal fixation devices. J Biomed Mater Res. 1994;28:289–301.CrossRefPubMedGoogle Scholar
  37. 37.
    Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials. 2006;27:3136–46.CrossRefPubMedGoogle Scholar
  38. 38.
    Albino M, Elisabete DP, Susana F, Iva P, Alexandra PM, Rui LR, et al. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small. 2009;5:1195–206.Google Scholar
  39. 39.
    Cui N-Y, Brown NMD. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl Surf Sci. 2002;189:31–8.CrossRefADSGoogle Scholar
  40. 40.
    Curtis AS, Forrester JV, McInnes C, Lawrie F. Adhesion of cells to polystyrene surfaces. J Cell Biol. 1983;97:1500–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Zbigniew G, Sylwester G. Attachment, growth, and activity of rat osteoblasts on polylactide membranes treated with various low-temperature radiofrequency plasmas. J Biomed Mater Res A. 2006;76A:288–99.CrossRefGoogle Scholar
  42. 42.
    Noga DE, Petrie TA, Kumar A, Weck M, Garcia AJ, Collard DM. Synthesis and modification of functional poly(lactide) copolymers: toward biofunctional materials. Biomacromolecules. 2008;9:2056–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Grafahrend D, Lleixa Calvet J, Salber J, Dalton PD, Moeller M, Klee D. Biofunctionalized poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanofibers for tissue engineering. J Mater Sci Mater Med. 2008;19:1479–84.CrossRefPubMedGoogle Scholar
  44. 44.
    Choi WS, Bae JW, Lim HR, Joung YK, Park JC, Kwon IK, et al. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity. Biomed Mater. 2008;3:44104.CrossRefGoogle Scholar
  45. 45.
    Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D, L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng. 2006;12:221–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54:139–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Dettin M, Conconi MT, Gambaretto R, Pasquato A, Folin M, Di Bello C, et al. Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials. J Biomed Mater Res. 2002;60:466–71.CrossRefPubMedGoogle Scholar
  48. 48.
    Yang XB, Roach HI, Clarke NM, Howdle SM, Quirk R, Shakesheff KM, et al. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone. 2001;29:523–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Esmaiel J, Xuezhong H, Mani TV, Alireza SS, Weijie X. Material properties and bone marrow stromal cells response to < I > In situ </I > crosslinkable RGD-functionlized lactide- < I > co </I > -glycolide scaffolds. J Biomed Mater Res A. 2009;89A:124–37.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jürgen Rudolf Josef Paletta
    • 1
    Email author
  • Sarah Bockelmann
    • 1
  • Andreas Walz
    • 2
  • Christina Theisen
    • 1
  • Joachim Heinz Wendorff
    • 2
  • Andreas Greiner
    • 2
  • Susanne Fuchs-Winkelmann
    • 1
  • Markus Dietmar Schofer
    • 1
  1. 1.Department of OrthopedicsUniversity of MarburgMarburg, BaldingerstraßeGermany
  2. 2.Department of ChemistryUniversity of MarburgMarburg, Hans-Meerwein-StraßeGermany

Personalised recommendations