Skip to main content
Log in

Random damage and characteristics of debris particles are two important and yet ignored factors in the mechanical integrity of the stem-cement interface of a total hip replacement: influence of the surface finish of the metal stem

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The importance of the conditions at the stem-cement interface in cemented total joint replacements (THRs) with regard to the in vivo longevity of the implant is well recognized. In the present study, we used a simplified model of one part of a cemented THR (alloy rectangular beam bonded to rectangular cement plate) to study the influence of surface finish of the alloy beam (stem) on two measures of the evolution of random damage at the alloy beam-cement plate interface (stem-cement interface), under quasi-static direct shear load. Three surface finishes of the beams were used: satin-finish, grit-blasted, and plasma-sprayed. The random damage events were monitored from the emitted acoustic signals, with the two measures computed from these signals being the intensity of random damage events (IRDE) and the mean damage event energy (MDEE). Large number of random damage events (higher values of IRDE and low value of MDEE) occurred with grit blasted specimens, suggesting a high probability for the generation of debris particles at the interface. These findings, in conjunction with details on the size and shape of the debris particles, obtained using scanning electron microscopy, lead to the suggestion that satin-finish stems are desirable for use in cemented THRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang JS, Taylor M, Flivik G, Lidgren L. Factors affecting the static shear strength of the prosthetic stem–bone cement interface. J Mater Sci: Mater Med. 2003;14:55–61.

    Article  CAS  Google Scholar 

  2. Mann KA, Damron LA, Miller MA, Race A, Clarke MT, Cleary RJ. Stem-cement porosity may explain early loosening of cemented femoral hip components: experimental-computational in vitro study. J Orthop Res. 2007;25(3):340–50.

    Article  PubMed  Google Scholar 

  3. Bishop NE, Ferguson S, Tepic S. Porosity reduction in bone cement at the cement–stem interface. J Bone Joint Surg. 1996;78-B:349–57.

    Google Scholar 

  4. Race A, Miller MA, Ayers DC, Cleary RJ, Mann KA. The influence of surface roughness on stem–cement gaps. J Bone Jnt Surg. 2002;84B:1199–204.

    Article  Google Scholar 

  5. Race A, Miller MA, Clarke MT, Mann KA. Cement-implant interface gaps explain the poor results of CMW3 for femoral stem fixation: a cadaver study of migration, fatigue and mantle morphology. Acta Orthop. 2005;76:679–87.

    Article  PubMed  Google Scholar 

  6. Wang JS, Franzen H, Lidgren L. Interface gap after implantation of a cemented femoral stem in pigs. Acta Ortho Scand. 1999;70:234–9.

    Article  CAS  Google Scholar 

  7. Damron LA, Kim DG, Mann KA. Fatigue debonding of the roughened stem-cement interface: effects of surface roughness and stem heating conditions. J Biomed Mater Res Part B: Appl Biomater. 2006;78B:181–8.

    Article  CAS  Google Scholar 

  8. Dall DM, Miles AW, Juby G. Accelerated polymerization of acrylic bone cement using preheated implants. Clin Orthop Relat Res. 1986;211:148–50.

    PubMed  Google Scholar 

  9. Mann KA, Damron LA, Race A, Ayers DC. Early cementing does not increase debonds energy of grit blasted interfaces. J Orthop Res. 2004;22:822–7.

    Article  PubMed  Google Scholar 

  10. Crowninshield RD, Jennings JD, Laurent ML, Maloney WJ. Cemented femoral component surface finish mechanics. Clin Orthop Relat Res. 1998;355:90–102.

    Article  PubMed  Google Scholar 

  11. Barb W, Park JB, Kenner GH, von Recum AF. Intramedullary fixation of artificial hip joints with bone cement-precoated implants. I. Interfacial strengths. J Biomed Mater Res. 1982;16:447–58.

    Article  CAS  PubMed  Google Scholar 

  12. Bundy KJ, Penn RW. The effect of surface preparation on metal/bone cement interfacial strength. J Biomed Mater Res. 1987;21:773–805.

    Article  CAS  PubMed  Google Scholar 

  13. Davies JP, Singer G, Harris WH. The effect of a thin coating of polymethylmethacrylate on the torsional fatigue strength of the cement-metal interface. J Appl Biomater. 1992;3:45–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed AM, Raab S, Miller JE. Metal/cement interface strength in cemented stem fixation. J Orthop Res. 1984;2:105–18.

    Article  CAS  PubMed  Google Scholar 

  15. Raab S, Ahmed AM, Provan JW. The quasistatic and fatigue performance of the implant/bone-cement interface. J Biomed Mater Res. 1981;15:159–82.

    Article  CAS  PubMed  Google Scholar 

  16. Mann KA, Edidin AA, Ordway NR, Manley MT. Fracture toughness of CoCr alloy-PMMA cement interface. J Biomed Mater Res. 1997;38:211–9.

    Article  CAS  PubMed  Google Scholar 

  17. Collis DK, Mohler CG. Loosening rates and bone lysis with rough finished and polished stems. Clin Orthop Rel Res. 1998;355:113–22.

    Article  Google Scholar 

  18. Della Valle AMG, Zoppi A, Peterson MGE, Salvati EA. A rough surface finish affects the clinical and radiographic performance of a modern cemented femoral stem. Clin Orthop Relat Res. 2005;436:158–63.

    Article  PubMed  Google Scholar 

  19. Ong A, Wong KL, Lai M, Garino JP, Steinberg ME. Early failure of precoated femoral components in primary total hip arthroplasty. J Bone Joint Surg. 2002;84-A:786–92.

    PubMed  Google Scholar 

  20. Della Valle AG, Rana A, Nestor B, Bostrom M, Westrich G, Salvati EA. Metallic shedding, surface finish changes, and extensive femoral osteolysis in the loose Spectron EF stem. Clin Orthop Relat Res. 2006;442:165–70.

    Article  Google Scholar 

  21. Rasquinha VJ, Ranawat CS, Dua V, Ranawat AS, Rodriguez JA. A prospective, randomized, double-blind study of smooth versus rough stems using cement fixation: minimum 5-year follow-up. J Arthroplasty. 2004;19(Suppl 2):2–9.

    Article  PubMed  Google Scholar 

  22. Vail TP, Goetz D, Tanzer M, Fisher DA, Mohler CG, Callaghan JJ. A prospective randomized trial of cemented femoral components with polished versus grit-blasted surface finish and identical stem geometry. J Arthroplasty. 2003;18(Suppl 1):95–102.

    Article  PubMed  Google Scholar 

  23. Verdonschot N, Tanck E, Huiskes R. Effects of prosthesis surface roughness on the failure process of cemented tip implants after stem-cement debonding. J Biomed Mater Res. 1998;42:554–9.

    Article  CAS  PubMed  Google Scholar 

  24. Beksac B, Taveras BS, Gonzales DV, Salvati EA. Surface finish mechanics explain different clinical survivorship of cemented femoral stems for total hip arthroplasty. J Long-Term Eff Med. 2006;16(6):407–22.

    Google Scholar 

  25. Heuer DA, Mann KA. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test. J Biomech Eng. 2000;122:647–51.

    Article  CAS  PubMed  Google Scholar 

  26. Qi G, Li J, Mann KA, Mouchon WP, Hamstad MA, Salehi A, et al. 3D real time methodology monitoring cement failures in THA. J Biomed Mater Res A. 2004;71:391–402.

    Article  PubMed  Google Scholar 

  27. Qi G. Attenuation of acoustic emission body waves in acrylic bone cement and synthetic bone using wavelet time-scale analysis. J Biomed Mater Res. 2000;521:148–56.

    Article  Google Scholar 

  28. Thota S. Acoustic emission detection of X-force horizontal conveyer bearings and sliding material pairs. MS thesis. The University of Memphis; 2008.

  29. Chang PB, Mann KA, Bartel DL. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length. Clin Orthop Relat Res. 1998;355:57–69.

    Article  PubMed  Google Scholar 

  30. Kimura Y, Sugimura J. Microgeometry of sliding surfaces and wear particles in lubricated contact. Wear. 1984;100:33–45.

    Article  Google Scholar 

  31. Waterhouse RB. Fretting corrosion. NY: Pergamon Press; 1972.

    Google Scholar 

Download references

Acknowledgments

The project described was supported by Grant Number AR051119 from NIH/NIAMS. The authors would like to thank Mr. Bin Zhang and Dr. Jihui Li for assisting the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, G., Wayne, S.F., Mann, K.A. et al. Random damage and characteristics of debris particles are two important and yet ignored factors in the mechanical integrity of the stem-cement interface of a total hip replacement: influence of the surface finish of the metal stem. J Mater Sci: Mater Med 21, 1385–1392 (2010). https://doi.org/10.1007/s10856-009-3946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3946-3

Keywords

Navigation