Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering

  • G. E. StanEmail author
  • S. Pina
  • D. U. Tulyaganov
  • J. M. F. Ferreira
  • I. Pasuk
  • C. O. Morosanu


Radiofrequency magnetron sputtering deposition at low temperature (150°C) was used to deposit bioactive glass coatings onto titanium substrates. Three different working atmospheres were used: Ar 100%, Ar + 7%O2, and Ar + 20%O2. The preliminary adhesion tests (pull-out) produced excellent adhesion values (~75 MPa) for the as-deposited bio-glass films. Bioactivity tests in simulated body fluid were carried out for 30 days. SEM–EDS, XRD and FTIR measurements were performed. The tests clearly showed strong bioactive features for all the prepared films. The best biomineralization capability, expressed by the thickest chemically grown carbonated hydroxyapatite layer, was obtained for the bio-glass coating sputtered in a reactive atmosphere with 7% O2.


Simulated Body Fluid Bioactive Glass Titanium Hydride Simulated Body Fluid Solution Carbonate Hydroxyapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks are due to CICECO for the support and to the Portuguese Foundation for Science and Technology for the fellowship grants of S. Pina (SFRH/BD/21761/2005) and to Romanian Ministry of Education and Research for the scientific projects support: CEEX 307/2006 and PN II 71-110/2007. The financial support of “BD” PhD research scholarship offered by CNCSIS is also gratefully acknowledged by G.E. Stan.


  1. 1.
    Lossdorfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials. 2004;25:2547–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Cerruti M, Greenspan D, Powers K. Effects of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials. 2005;26:1665–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Saranti A, Koutselas I, Karakassides MA. Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J Non-Cryst Solids. 2006;352:390–8.CrossRefADSGoogle Scholar
  4. 4.
    Andrade AL, Valério P, Goes AM, de Fatima Leite M, Domingues RZ. Influence of morphology on in vitro compatibility of bioactive glasses. J Non-Cryst Solids. 2006;352:3508–11.CrossRefADSGoogle Scholar
  5. 5.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.CrossRefPubMedGoogle Scholar
  6. 6.
    Yan X, Huang X, Yu C, Deng H, Wang Y, Zhang Z, et al. The in vitro bioactivity of mesoporous bioactive glasses. Biomaterials. 2006;27:3396–903.CrossRefPubMedGoogle Scholar
  7. 7.
    Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Karakassides MA, Ferreira JMF. Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials. 2006;27:1832–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Mardare CC, Mardare AI, Fernandes JRF, Joanni E, Pina SCA, Fernandes MHV, et al. Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering. J Eur Cer Soc. 2003;23:1027–30.CrossRefGoogle Scholar
  10. 10.
    Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Cer Soc. 2003;23:2921–30.CrossRefGoogle Scholar
  11. 11.
    Liste S, Serra J, Gonzalez P, Borrajo JP, Chiussi S, Leon B, et al. The role of the reactive atmosphere in pulsed laser deposition of bioactive glass films. Thin Solid Films. 2004;453–454:224–8.CrossRefGoogle Scholar
  12. 12.
    Izquierdo-Barba I, Conde F, Olmo N, Lizarbe MA, Garcia MA, Vallet-Regi M. Vitreous SiO2–CaO coatings on Ti6Al4 V alloys: reactivity in simulated body fluid versus osteoblast cell culture. Acta Biomater. 2006;2:445–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Borrajo JP, Serra J, Gonzalez P, Léon B, Munoz FM, Lopez M. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition. J Mater Sci Mater Med. 2007;18:2371–6. doi: 10.1007/s10856-007-3153-z.CrossRefPubMedGoogle Scholar
  14. 14.
    Fathi MH, Doost Mohammadi A. Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A. 2008;474:3–128.Google Scholar
  15. 15.
    Zhao Y, Song M, Chen C, Liu J. The role of the pressure in pulsed laser deposition of bioactive glass films. J Non-Cryst Solids. 2008;354:4000–4.CrossRefADSGoogle Scholar
  16. 16.
    Berbecaru C, Alexandru HV, Ianculescu A, Popescu A, Socol G, Sima F, et al. Bioglass thin films for biomimetic implants. Appl Surf Sci. 2009;255(10):5476–9.CrossRefADSGoogle Scholar
  17. 17.
    Peddi L, Brow RK, Brown RF. Bioactive borate glass coatings for titanium alloys. J Mater Sci Mater Med. 2008;19:3145–52. doi: 10.1007/s10856-008-3419-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Goller G. The effect of bond coat on mechanical properties of plasma sprayed Bioglass-titanium coatings. Ceram Int. 2004;30:351–5.CrossRefGoogle Scholar
  19. 19.
    Hench LL, Wilson J. An introduction to bioceramics. 1st ed. Singapore: World Scientific Publishing Company; 1993.Google Scholar
  20. 20.
    Saiz E, Tomsia AP, Fujino S, Gomez-Vega JM. Graded coatings for metallic implant alloys. In: Lewinsohn CA, Singh M, Loehman R, editors. Ceramic transactions: advances in joining of ceramics. 2000. p. 159–72.Google Scholar
  21. 21.
    Wasa K, Kitabatake M, Adachi H. Thin film materials technology: sputtering of compound materials. New York: Noyes Publications; 2003.Google Scholar
  22. 22.
    Agathopoulos S, Tulyaganov DU, Valério P, Ferreira JMF. A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass-ceramics. Biomaterials. 2005;26:2255–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, et al. Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non-Cryst Solids. 2006;352:322–8.CrossRefADSGoogle Scholar
  24. 24.
    Tulyaganov DU, Agathopoulos S, Ventura JMG, Karakassides MA, Fabrichnaya O, Ferreira JMF. Synthesis of glass–ceramics of CaO–MgO–SiO2 system containing B2O3, P2O5, Na2O and CaF2. J Eur Cer Soc. 2006;26:1463–71.CrossRefGoogle Scholar
  25. 25.
    Tulyaganov DU, Agathopoulos S, Fernandes HR, Ferreira JMF. Processing of glass-ceramics in the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–(P2O5)–F system via sintering and crystallization of glass powder compacts. Ceram Int. 2006;32:195–200.CrossRefGoogle Scholar
  26. 26.
    Epple M, Bäuerlein E. Handbook of biomineralization: medical and clinical aspects. NY: Wiley; 2009.Google Scholar
  27. 27.
    Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T. Effects of ions dissolved from bioactive glass-ceramic on the surface apatite formation. J Mater Sci Mater Med. 1993;4:1–4.CrossRefGoogle Scholar
  28. 28.
    Swanepoel RJ. Determination of the thickness and optical constants of amorphous silicon. J Phys E Sci Instrum. 1983;16:1214–22.CrossRefADSGoogle Scholar
  29. 29.
    Güttler D, Abendroth B, Grötzschel R, Möller W, Depla D. Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation. Appl Phys Lett. 2004;85(25):6134–6.CrossRefADSGoogle Scholar
  30. 30.
    Rosen D. Defining the surface binding energy in dynamic Monte Carlo simulation for reactive sputtering of compounds. Vacuum. 2006;80:944–8.CrossRefGoogle Scholar
  31. 31.
    Berg S, Nyberg T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films. 2005;476(2):215–30.CrossRefADSGoogle Scholar
  32. 32.
    Rosen D, Katardjiev I, Berg S, Moller W. TRIDYN simulation of target poisoning in reactive sputtering. Nucl Instrum Methods Phys Res B. 2005;228:193–7.CrossRefADSGoogle Scholar
  33. 33.
    Ding SJ. Properties and immersion behavior of magnetron-sputtered multilayered hydroxyapatite/titanium composite coatings. Biomaterials. 2003;24:4233–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Stan GE, Morosanu CO, Marcov DA, Pasuk I, Miculescu F, Reumont G. Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings. Appl Surf Sci. 2009;255:9132–8.CrossRefADSGoogle Scholar
  35. 35.
    Juhasz JA, Best SM, Auffret AD, Bonfield W. Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med. 2008;19(4):1823–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Stan GE, Ferreira JMF. An algorithm for preparing bioactive fluorinated hydroxyapatite coatings by sol gel technique. J Optoelectron Adv Mater. 2007;9(8):2539–42.Google Scholar
  37. 37.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  38. 38.
    Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78. doi: 10.1007/s10856-006-0432-z.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim CY, Clark AE, Hench LL. Early stages of calcium-phosphate formation in bioglasses. J Non-Cryst Solids. 1989;113:195–202.CrossRefADSGoogle Scholar
  40. 40.
    Hill R. An alternative view of the degradation of bioglass. J Mater Sci Lett. 1996;15:1122–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. E. Stan
    • 1
    Email author
  • S. Pina
    • 2
  • D. U. Tulyaganov
    • 2
  • J. M. F. Ferreira
    • 2
  • I. Pasuk
    • 1
  • C. O. Morosanu
    • 1
  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations