Skip to main content
Log in

Hydrogels based on chitosan–xanthan for controlled release of theophylline

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this paper is theophylline (THP) inclusion into xanthan–chitosan polyionic complex (Xa–CS) and the study of its in vitro and in vivo kinetic release. Xa–CS hydrogel was obtained by ionic complexation between two oppositely charged polysaccharides. THP was loaded into the Xa–CS matrix by diffusion of the drug solution. The obtained samples were characterized by FTIR spectroscopy, SEM microscopy and study of the swelling behavior. THP in vitro release experiments were carried out in conditions mimicking the gastrointestinal environment. The chosen drug dose for in vivo study was 15 mg THP/Kg body weight of THP powder or an equivalent dose in complex form. THP serum concentrations were determined by an HPLC assay. The THP peak serum concentration (C max) was 7.18 μg/ml for free THP and AUC0–48 was 25.76 μg h/ml, while in the case of Xa–CS–THP, C max was of 5.72 μg/ml and AUC0–48 = 45.72 μg h/ml. The in vivo study regarding the behaviour of the obtained formulation, showed an increase bioavailability of THP compared to the raw drug, suggesting the possible application of the complex Xa–CS as an oral controlled drug delivery system in the management of chronic pulmonary obstructive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Soeterboek AM, Jonkman JHG. Clinical-pharmacokinetics aspects of theophylline. In: Merkus FWHM, editor. The serum concentration of drugs: clinical relevance, theory and practice. Amsterdam: Excerpta Medica; 1980, p. 25–259.

  2. Barnes PJ. Theophylline new perspectives for an old drug. Am J Respir Crit Care Med. 2003;167:813–8.

    Article  PubMed  Google Scholar 

  3. Rama FSF, Jardinb JR, Atallahc A, Castrod AA, Mazzinie R, Goldsteinf R, et al. Efficacy of theophylline in people with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. Resp Med. 2005;99:135–44.

    Article  Google Scholar 

  4. Mellstrand T, Svedmyr N, Fagerstrom PO. Absorption of theophylline from conventional and sustained release tablets. Eur J Respir Dis Suppl. 1980;109:54–61.

    CAS  PubMed  Google Scholar 

  5. Jenne JW, Wyze E, Road ES, MacDonald FM. Pharmacokinetics of theophylline. Clin Pharmacol Ther. 1972;13:349–60.

    CAS  PubMed  Google Scholar 

  6. Ellis EF, Koysooko R, Levy G. Pharmacokinetics of theophylline in children with asthma. Pediatrics. 1976;58:542–7.

    CAS  PubMed  Google Scholar 

  7. Mehvar R. Principles of nonlinear pharmacokinetics. Am J Pharm Educ. 2001;65:178–84.

    Google Scholar 

  8. Bauer LA. Applied clinical pharmacokinetics. 2nd ed.  : McGraw Hill Medical; 2008.

    Google Scholar 

  9. Mastiholimath VS, Dandagi PM, Jain SS, Gadad AP, Kulkarni AR. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int J Pharm. 2007;328:49–56.

    Article  CAS  PubMed  Google Scholar 

  10. Lee SJ, Rosenberg M. Preparation and properties of glutaraldehyde cross-linked whey protein-based microcapsules containing theophylline. J Control Rel. 1999;61:123–36.

    Article  CAS  Google Scholar 

  11. Radwan M, Zaghloul I, Aly Z. In vivo performance of parenteral theophylline-loaded polyisobutylcyanoacrylate nanoparticles in rats. Eur J Pharm Sci. 1999;8:95–8.

    Article  CAS  PubMed  Google Scholar 

  12. Asada M, Takahashi H, Okamoto H, Tanino H, Danjo K. Theophylline particle design using chitosan by the spray drying. Int J Pharm. 2004;270:167–74.

    Article  CAS  PubMed  Google Scholar 

  13. Nunthanid J, Laungtana-anan M, Sriamornsak P, Limmatvapirat S, Puttipipatkhachorn S, Lim LY, et al. Characterization of chitosan acetate as a binder for sustained release tablets. J Control Rel. 2004;99:15–26.

    Article  CAS  Google Scholar 

  14. Miyazaki Y, Onuki Y, Yakou S, Takayama K. Effect of temperature-increase rate on drug release characteristics of dextran microspheres prepared by emulsion solvent evaporation process. Int J Pharm. 2006;324:144–51.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao X, Liu JP, Zhang X, Li Y. Enhancement of transdermal delivery of theophylline using microemulsion vehicle. Int J Pharm. 2006;327:58–64.

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Carracedo A, Souto C, Martinez-Pachebi R, Concheiro A, Gomez-Amoza JL. Microstructural and drug release properties of oven-dried and of slowly or fast frozen freeze-dried MCC-Carbopol® pellets. Eur J Pharm Biopharm. 2007;67:236–45.

    Article  CAS  PubMed  Google Scholar 

  17. Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM. Novel interpenetrating polymer microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohyd Polym. 2007;69:678–87.

    Article  CAS  Google Scholar 

  18. Zacchigna M, Luca GD, Cateni F, Zorzet S, Maurich V. Improvement of physicochemical and biopharmaceutical properties of theophylline by poly(ethylene glycol) conjugates. Il Farmaco. 2003;58:1307–12.

    Article  CAS  PubMed  Google Scholar 

  19. Munday DL, Fassihi AR. In vitro-in vivo correlation study on a novel controlled release theophylline delivery system and on Theo-Dur tablets. Int J Pharm. 1995;118:251–5.

    Article  CAS  Google Scholar 

  20. Musko Z, Pintye-Hodi K, Gaspar R, Pintye J, Szabo-Revesz P, Eros I, et al. The in vitro and in vivo dissolution of theophylline from film-coated pellets. Eur J Pharm Biopharm. 2001;51:143–6.

    Article  CAS  PubMed  Google Scholar 

  21. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Rel. 2004;100:5–28.

    Article  CAS  Google Scholar 

  22. Costa FO, Pais AACC, Sousa JJS. Analysis of formulation effects in the dissolution of ibuprofen pellets. Int J Pharm. 2004;270:9–19.

    Article  CAS  PubMed  Google Scholar 

  23. Labačevski N, Zendeloska D, Sibinovska O, Simeska S, Kikerkov I, Miloseviski P, et al. Development and validation of the HPLC method for the determination of theophylline serum concentration: a comparison with FPIA method and its application for bioequivalence study. Bull Chem Technol Macedonia. 2003;22:97–104.

    Google Scholar 

  24. Dumitriu S, Magny P, Montagne D, Vidal P, Chornet E. Polyionic hydrogel obtained by complexation between xanthan and chitosan: their properties as supports for enzyme immobilization. J Biactive Comp Polym. 1994;9:184–210.

    Article  CAS  Google Scholar 

  25. Argin-Soysal S, Kofinas P, Martin Lo Y. Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels. Food Hydrocolloids. 2007;23:202–9.

    Article  Google Scholar 

  26. Denuziere A, Ferrier D, Damour O, Domard A. Chitosan-chondroitin sulphate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials. 1998;19:1275–85.

    Article  CAS  PubMed  Google Scholar 

  27. Cetin S, Erdincler A. The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges. Water Sci Technol. 2004;50(9):49–56.

    CAS  PubMed  Google Scholar 

  28. Hamcerencu M, Desbrieres J, Popa M, Khoukh A, Riess G. New unsaturated derivatives of Xanthan gum: synthesis and Characterization. Polymer. 2007;48:1921–9.

    Article  CAS  Google Scholar 

  29. Gunasekaran S, Sakari G, Ponnusamy S. Vibrational spectral investigation on xanthine and its derivates-theophylline, caffeine and theobromine. Spectrochim Acta A. 2005;61:117–27.

    Article  CAS  Google Scholar 

  30. Dashevsky A, Mohamad A. Development of pulsatile multiparticulate drug delivery system coated with aqueous dispersion Aquacoat® ECD. Int J Pharm. 2006;318:124–31.

    Article  CAS  PubMed  Google Scholar 

  31. Serra L, Domenech J, Peppas NA. Drug transport mechanisms and release kinetics from moleculary designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. 2006;27:5440–51.

    Article  CAS  PubMed  Google Scholar 

  32. Aelenei N, Popa MI, Novac O, Lisa G, Balaita L. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci Mater Med. 2009;20:1095–102.

    Article  CAS  PubMed  Google Scholar 

  33. Ritger PL, Peppas NA. A simple equation for description of solide release. II. Fickian and anoumalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  34. Lee WF, Jou LL. Effect of the intercalation agent content of montmorillonite on the swelling behavior and drug release behavior of nanocomposite hydrogels. J Appl Polym Sci. 2004;94:74–82.

    Article  CAS  Google Scholar 

  35. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11:1358–61.

    Article  CAS  PubMed  Google Scholar 

  36. Ishizawa C, Dumitriu S, Chornet E. Enhaced solubilization rates of hydrophobic drugs using polyionic chitosan–xanthan hydrogel. US Patent No. 0203962; 2001.

Download references

Acknowledgements

The work was financially supported by Ministry of Education and Science Romania, project PNCD II 41-017/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Ionel Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, N., Novac, O., Profire, L. et al. Hydrogels based on chitosan–xanthan for controlled release of theophylline. J Mater Sci: Mater Med 21, 1241–1248 (2010). https://doi.org/10.1007/s10856-009-3937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3937-4

Keywords

Navigation