Skip to main content

Advertisement

Log in

Two ply tubular scaffolds comprised of proteins/poliglecaprone/polycaprolactone fibers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrospun bi-layer tubular hybrid scaffolds composed of poliglecaprone (PGC), polycaprolactone (PCL), elastin (E), and gelatin (G) were prepared and thereafter crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Scanning electron microscopic (SEM) images revealed a highly porous micro-structure comprising randomly distributed non-woven fibers with the majority of fibers in submicron diameters. The EDC-crosslinking yielded an average crosslinking degree of 40%. Uni-axial tensile test of hydrated scaffolds in both longitudinal and circumferential directions revealed tensile properties, comparable to those of native arteries. The graft (PGC:PCL = 1:3) did not demonstrate significant difference before and after EDC-crosslinking in tensile strength or % strain in either longitudinal or circumferential directions. However, crosslinking increased the Young’s modulus of the graft along the longitudinal direction (from 5.84 to 8.67 MPa). On the contrary, the graft (3:1) demonstrated a significant decrease in maximum strain in both directions. Cyto-assay using human umbilical vein endothelial cells (HUVECs) showed excellent cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buttafoco L, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J. Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials. 2006;27:2380–9.

    Article  CAS  PubMed  Google Scholar 

  2. Hoenig MR, Campbell GR, Rolfe BE, Campbell JH. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler Thromb Vasc Biol. 2005;25:1128–34.

    Article  CAS  PubMed  Google Scholar 

  3. Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115–22.

    Article  CAS  PubMed  Google Scholar 

  4. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science. 1999;284:489–93.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Tiwari A, Salacinski HJ, Punshon G, Hamilton G, Seifalian AM. Development of a hybrid cardiovascular graft using a tissue engineering approach. Faseb J. 2002;16:791–6.

    Article  CAS  PubMed  Google Scholar 

  6. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci. 2004;9:1422–32.

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999–6008.

    Article  CAS  PubMed  Google Scholar 

  8. Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, et al. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater. 2006;1:72–80.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–94.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  11. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas V, Dean DR, Vohra YK. Nanostructured biomaterials for regenerative medicine. Curr Nanosci. 2006;2:155–77.

    CAS  Google Scholar 

  13. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules. 2007;8:631–7.

    Article  CAS  PubMed  Google Scholar 

  14. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59:1413–33.

    Article  CAS  PubMed  Google Scholar 

  15. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008;29:2891–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(l-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials. 2008;29:1872–9.

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials. 2006;27:2705–15.

    Article  CAS  PubMed  Google Scholar 

  18. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type ii collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13:1593–605.

    Article  CAS  PubMed  Google Scholar 

  19. Caracciolo PC, Thomas V, Vohra YK, Buffa F and Abraham GA. Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications. J Mater Sci Mater Med. 2009. doi 10.1007/s10856-009-3768-3.

  20. He W, Yong T, Teo WE, Ma Z, Ramakrishna S. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 2005;11:1574–88.

    Article  CAS  PubMed  Google Scholar 

  21. Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–8.

    CAS  PubMed  Google Scholar 

  22. Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A. 2006;79:963–73.

    PubMed  Google Scholar 

  23. Thomas V, Zhang X, Catledge SA, Vohra YK. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater. 2007;2:224–32.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Zhang X, Thomas V, Vohra YK. In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers. J Biomed Mater Res B Appl Biomater. 2009;89:135–47.

    PubMed  Google Scholar 

  25. Badylak SF. Modification of natural polymers: collagen. In: Atala A, Lanza R, editors. Methods of tissue engineering. San Diego, CA: Academic Press; 2002. p. 505–14.

    Chapter  Google Scholar 

  26. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17:471–84.

    Article  CAS  PubMed  Google Scholar 

  27. Koob TJ. Collagen fixation. In: Wnek GE, Bowlin G, editors. Encyclopedia of biomaterials and biomedical engineering. New York: Marcel Dekker; 2004. p. 335–47.

    Google Scholar 

  28. Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105.

    Article  CAS  PubMed  Google Scholar 

  29. van Wachem PB, van Luyn MJ, Olde Damink LH, Dijkstra PJ, Feijen J, Nieuwenhuis P. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen. J Biomed Mater Res. 1994;28:353–63.

    Article  PubMed  Google Scholar 

  30. Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials. 2000;21:581–93.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas V, Kumari TV, Jayabalan M. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications. Biomacromolecules. 2001;2:588–96.

    Article  CAS  PubMed  Google Scholar 

  32. Ma Z, He W, Young T, Ramakrishna S. Potential of nanofiber matrix as scaffolds in tissue-engineering. Tissue Eng. 2005;11:1149.

    Article  CAS  PubMed  Google Scholar 

  33. L’Heureux N, Dusserre N, Marini A, Garrido S, de la Fuente L, McAllister T. Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Clin Pract Cardiovasc Med. 2007;4:389–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from National Science Foundation-NSF-NIRT program under DMR-0402891. The authors are also grateful for instrumental training and support from Drs. Derrick Dean and Robin Foley of Department of Material Sciences and Engineering, and Pre-doctorals Moncy Jose of Department of Materials Science and Engineering, and Ting Feng of Department of Microbiology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinoy Thomas or Yogesh K. Vohra.

Additional information

Xing Zhang and Vinoy Thomas contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Thomas, V. & Vohra, Y.K. Two ply tubular scaffolds comprised of proteins/poliglecaprone/polycaprolactone fibers. J Mater Sci: Mater Med 21, 541–549 (2010). https://doi.org/10.1007/s10856-009-3922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3922-y

Keywords

Navigation