Skip to main content
Log in

Development of novel chitin/nanosilver composite scaffolds for wound dressing applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Antibiotic resistance of microorganisms is one of the major problems faced in the field of wound care and management resulting in complications like infection and delayed wound healing. Currently a lot of research is focused on developing newer antimicrobials to treat wounds infected with antibiotic resistant microorganisms. Silver has been used as an antimicrobial agent for a long time in the form of metallic silver and silver sulfadiazine ointments. Recently silver nanoparticles have come up as a potent antimicrobial agent and are finding diverse medical applications ranging from silver based dressings to silver coated medical devices. Chitin is a natural biopolymer with properties like biocompatibility and biodegradability. It is widely used as a scaffold for tissue engineering applications. In this work, we developed and characterized novel chitin/nanosilver composite scaffolds for wound healing applications. The antibacterial, blood clotting and cytotoxicity of the prepared composite scaffolds were also studied. These chitin/nanosilver composite scaffolds were found to be bactericidal against S. aureus and E. coli and good blood clotting ability. These results suggested that these chitin/nanosilver composite scaffolds could be used for wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gong P, Li H, He X, Wang K, Hu J, Tan W. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol. 2007;18:604–11.

    Google Scholar 

  2. Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000;26:131–8.

    Article  CAS  PubMed  Google Scholar 

  3. Castellano JJ, Shafii SM, Ko Donate FG, Wright TE, Mannari RJ. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J. 2007;4:114–22.

    Article  PubMed  Google Scholar 

  4. Fox CL, Modak SM. Mechanism of silver sulphadiazine action on burn wound infections. Antimicrob Agents Chemother. 1974;5:582–8.

    CAS  PubMed  Google Scholar 

  5. Fox CL. Silver sulfadiazine: a new topical therapy for Pseudomonas in burns. Arch Surg. 1968;96:184–8.

    PubMed  Google Scholar 

  6. Gemmell CG, Edwards DI, Frainse APJ. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother. 2006;57:589–608.

    Article  CAS  PubMed  Google Scholar 

  7. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004;54:1019–24.

    Article  CAS  PubMed  Google Scholar 

  8. Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiob. 2006;55:59–63.

    Article  CAS  Google Scholar 

  9. Leaper DL. Silver dressings: their role in wound management. Int Wound J. 2006;3:282–94.

    Article  PubMed  Google Scholar 

  10. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater. 2000;52:662–8.

    Article  CAS  Google Scholar 

  11. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface. 2007;275:177–82.

    Article  Google Scholar 

  12. Morones JR, Elechiguerra JL, Camacho A, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  CAS  ADS  Google Scholar 

  13. Song HY, Ko KK, Oh LH, Lee BT. Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater. 2006;11:58.

    Google Scholar 

  14. Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63.

    Article  CAS  PubMed  Google Scholar 

  15. Hu W, Chen C, Li X, Shi S, Shen W, Zhang Z, et al. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C. 2009;28:1216–9.

    Article  Google Scholar 

  16. Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym. 2008;72:43–51.

    Article  CAS  Google Scholar 

  17. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C. 2008;28:515–8.

    Article  CAS  Google Scholar 

  18. Ong SY, Wu J, Shabbir MM, Mui-Hong T, Jia Lu. Devolopment of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–32.

    Article  CAS  PubMed  Google Scholar 

  19. Lu S, Gao W, Gu HY. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns. 2008;34:623–8.

    Article  PubMed  Google Scholar 

  20. Paula MM, Vitorio Franco C, et al. Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng C. 2009;29:647–50.

    Article  CAS  Google Scholar 

  21. Jeon HJ, Kim S, Kim TG. Preparation of poly(-caprolactone)-based polyurethane nanofibers containing silver nanoparticles. Appl Surf Sci. 2008;254:5886–90.

    Article  CAS  ADS  Google Scholar 

  22. Rujitanaroj P, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer. 2008;49:4723–32.

    Article  CAS  Google Scholar 

  23. Guncem G, Cigdem AO, Sibel E, Fikret S, Djursun K, Birgul S, et al. Fatty acid-based polyurethane films for wound dressing applications. J Mater Sci: Mater Med. 2009;20:421–31.

    Article  Google Scholar 

  24. Lee SB, Kim YH, Chong MS, Lee YM. Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials. 2004;25:2309–17.

    Article  CAS  PubMed  Google Scholar 

  25. Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40:175–81.

    Article  CAS  PubMed  Google Scholar 

  26. Maeda Y, Jayakumar R, Nagahama H, Furuike T, Tamura H. Synthesis, characterization and bioactivity studies of novel β-chitin scaffolds for tissue-engineering applications. Int J Biol Macromol. 2008;42:463–7.

    Article  CAS  PubMed  Google Scholar 

  27. Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, et al. Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol. 2009;44:1–5.

    Article  CAS  PubMed  Google Scholar 

  28. Madhumathi K, Shalumon KT, Divya Rani VV, Tamura H, Furuike T, Selvamurugan N, et al. Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol. 2009;45:12–5.

    Article  CAS  PubMed  Google Scholar 

  29. Jayakumar R, Prabaharan M, Reis RL, Mano JF. Graft copolymerized chitosan—present status and applications. Carbohydr Polym. 2005;62:142–58.

    Article  CAS  Google Scholar 

  30. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Rel. 2001;73:255–67.

    Article  CAS  Google Scholar 

  31. Jayakumar R, Reis RL, Mano JF. Synthesis and characterization of pH-sensitive thiol-containing chitosan beads for controlled drug delivery applications. Drug Deliv. 2007;14:9–17.

    Article  CAS  PubMed  Google Scholar 

  32. Jayakumar R, Reis RL, Mano JF. Phosphorous containing chitosan beads for controlled oral drug delivery. J Bioact Compat Polym. 2006;21:327–40.

    Article  CAS  Google Scholar 

  33. Lee YM, Kim SS, Park MH, Song KW, Sung YK, Kang IK. β-Chitin-based wound dressing containing silver sulfurdiazine. J Mater Sci: Mater Med. 2000;11:817–23.

    Article  CAS  Google Scholar 

  34. Campos MGN, Henry RR, Lucia H, Innocentini M, Neera S. In vitro gentamicin sustained and controlled release from Chitosan cross-linked films. J Mater Sci: Mater Med. 2009;20:537–42.

    Article  CAS  Google Scholar 

  35. Demling RH, DeSanti L. Effects of silver on wound management. Wounds. 2001;13:4–9.

    Google Scholar 

  36. Katrin K, Yang W, Harald K, Perelman LT, Itzkan I, Dasari RR. Single molecule detection using surface enhanced Raman scattering. Phys Rev Lett. 1997;78:1667–70.

    Article  ADS  Google Scholar 

  37. Jaya J, Sumit A, Jyutika M, Rajwade, Pratibha O, Sanjeev K, and Kishore MP. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol pharm A. doi:10.1021/mp900056g.

  38. Shih MF, Shau MD, Chang MY, Chiou SK, Chang JK, Cherng JY. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers. Int J Pharm. 2006;327:117–25.

    Article  CAS  PubMed  Google Scholar 

  39. Jayakumar R, Egawa T, Furuike T, Nair SV, Tamura H. Synthesis, characterization, and thermal properties of phosphorylated chitin for biomedical applications. Polym Eng Sci. 2009;49:844–9.

    Article  CAS  Google Scholar 

  40. Chen Q, Zhou M, Fu Y, Weng J, Zhang Y, Yue L, et al. Magnetron sputtering synthesis silver and organic PEO nanocomposite. Surf Coat Technol. 2008;202:5576–8.

    Article  CAS  Google Scholar 

  41. Siddhartha S, Tanmay B, Arnab R, Gajendra S, Ramachandrarao P, Debabrata D. Characterization of enhanced antibacterial effects of novel silver Nanoparticles. Nanotechnology. 2007;18:1–9.

    Google Scholar 

  42. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed: Nanotechnol Biol Med. 2007;3:168–71.

    Article  CAS  Google Scholar 

  43. Kapadia NP, Kristol D, Spillert CR. Effect of endotoxin and silver ion on the clotting time of blood. Proceedings of the IEEE 31st annual northeast bioengineering conference. 2005. p. 161–162.

  44. Lam PK, Chan ES, Ho WS, Liew CT. In vitro cytotoxicity testing of nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci. 2004;61:125–7.

    CAS  PubMed  Google Scholar 

  45. Poon VKM, Burd A. In vitro cytotoxicity of silver: implications for clinical care. Burns. 2004;39:140–7.

    Article  Google Scholar 

  46. Kim JS, et al. Experimental antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med. 2007;3:95–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors R. Jayakumar is grateful to SERC Division, Department of Science and Technology (DST), India, for providing the fund under the scheme of “Fast Track Scheme for Young Investigators” (Ref. No. SR/FT/CS-005/2008). Dr. S. V. Nair also grateful to DST, India, which partially supported this work, under a center grant of the Nanoscience and Nanotechnology Initiative program monitored by Dr. C. N. R. Rao. The authors are also thankful to Mr. Sajin. P. Ravi for his help in SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhumathi, K., Sudheesh Kumar, P.T., Abhilash, S. et al. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci: Mater Med 21, 807–813 (2010). https://doi.org/10.1007/s10856-009-3877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3877-z

Keywords

Navigation