Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement



It is uncertain whether the use of bioactive bone cement has any beneficial effect on local bone adaptation following hip replacement. In this study, twelve goats underwent cemented hip hemiarthroplasty unilaterally, with either PMMA bone cement or strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement. Nine months later, the femoral cortical bones at different levels were analyzed by microhardness testing and micro-CT scanning. Extensive bone remodeling was found at proximal and mid-levels in both PMMA and Sr-HA groups. However, with regard to the differences of bone mineral density, cortical bone area and bone hardness between implanted and non-implanted femur, less decreases were found in Sr-HA group than PMMA group at proximal and mid-levels, and significant differences were shown for bone area and hardness at proximal level. The results suggested that the use of Sr-HA cement might alleviate femoral bone remodeling after hip replacement.


  1. 1.
    Shorr E, Carter AC. The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man. Bull Hosp Jt Dis Orthop Inst. 1952;13:59–66.Google Scholar
  2. 2.
    Takahashi N, Sasaki T, Suda T, Tsouderos Y. S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res. 2003;18:1082–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol. 2002;450:11–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Barbara A, Delannoy P, Denis BG, Marie PJ. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism. 2004;53:532–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Delannoy P, Bazot D, Marie PJ. Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism. 2002;51:906–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Modrowski D, Miravet L, Feuga M, Marie PJ. Increased proliferation of osteoblast precursor cells in estrogen-deficient rats. Am J Physiol. 1993;264(2 pt 1):E190–6.PubMedGoogle Scholar
  8. 8.
    Hott M, Deloffre P, Tsouderos Y, Marie PJ. S12911-2 reduces bone loss induced by short-term immobilization in rats. Bone. 2003;33:115–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Marie PJ. Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone. 2006;38:S10–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Johal KK, Mendoza-Suarez G, Escalante-Garcia JI. In vivo response of strontium and zince-based ionomeric cement implants in bone. J Mater Sci: Mater Med. 2002;13:375–9.CrossRefGoogle Scholar
  12. 12.
    Christoffersen J, Christoffersen MR, Kolthoff N. Effects of strontium ions on growth and dissolution of hydroxtapatite and on bone mineral detection. Bone. 1997;20:47–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen DM, Fu YF, Gu GZ. Preparation and solubility of the solid solution of strontium substituted hydroxyapatite. Chin J Biomed Eng. 2003;20:278–82.ADSGoogle Scholar
  14. 14.
    Chen DM, Fu YF. Evaluation on the mechanic properties of the solid solution of strontium substituted hydroxyapatite. Chin J Stoma Mater Appar. 2001;19:178–83.Google Scholar
  15. 15.
    Duncan C, Masterson E, Masri B. Impaction allografting with cement for the management of femoral bone loss. Orthop Clin North Am. 1998;29:297–305.CrossRefPubMedGoogle Scholar
  16. 16.
    Li YW, Leong JCY, Lu WW, Luk KDK, Cheung KMC, Chiu KY, et al. A novel injectable bioactive bone cement for spinal surgery: a development and preclinical study. J Biomed Mater Res. 2000;52:164–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Ni GX, Lu WW, Chiu KY, Li ZY, Fong DY, Luk KD. Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study. J Biomed Mater Res. 2006;77B:409–15.CrossRefGoogle Scholar
  18. 18.
    Wong CT, Lu WW, Chan WK, Cheung KMC, Luk KDK, Lu DS, et al. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement. J Biomed Mater Res. 2004;68A:513–21.CrossRefGoogle Scholar
  19. 19.
    Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, et al. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials. 2006;27:5127–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen QZ, Wong CT, Lu WW, Cheung KMC, Leong JCY, Luk KDK. Strengthening mechanism of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials. 2004;25:4243–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Ni GX, Lu WW, Chiu KY, Wang Y, Li ZY, Zhang YG, et al. Mechanical properties of femoral cortical bone following cemented hip replacement. J Orthop Res. 2007;25(11):1408–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Freeman MAR, Bradley GW, Revell PA. Observation upon the interface between bone and polymethylmethacrylate cement. J Bone J Surg. 1982;64B:489–93.Google Scholar
  23. 23.
    Jasty M, Maloney WJ, Bragdon CR, Haire T, Harris WH. Histomorphological studies of the long-term skeletal responses to well fixed cemented femoral component. J Bone J Surg. 1990;72A:1220–5.Google Scholar
  24. 24.
    Harper EJ. Bioactive bone cements. Proc Instn Mech Engrs. 1998;212:113–8.Google Scholar
  25. 25.
    Huiskes R. The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop. 1990;261:27–38.PubMedGoogle Scholar
  26. 26.
    Oh I, Harris WH. Proximal strain distribution in the loaded femur. J Bone Joint Surg. 1978;60A:75–85.Google Scholar
  27. 27.
    Silva MJ, Reed KL, Robertson DD, et al. Reduced bone stress as predicted by composite beam theory correlates with cortical bone loss following total hip arthroplasty. J Orthop Res. 1999;17:525–31.CrossRefPubMedGoogle Scholar
  28. 28.
    Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE. The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop. 1990;261:196–213.PubMedGoogle Scholar
  29. 29.
    Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop. 1988;231:7–28.PubMedGoogle Scholar
  30. 30.
    Fujita H, Matsuda Y, Iida H, et al. Evaluation of bioactive bone cement in canine total hip arthroplasty. J Biomed Mater Res. 2000;49:273–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Labella R, Braden M, Deb S. Novel hydroxyapatite-based dental composites. Biomaterials. 1994;15:1197–200.CrossRefPubMedGoogle Scholar
  32. 32.
    Saito M, Muraoka A, Mori T, Sugano N, Hino K. Experimental studies on a new bioactive bone cement: hydroxyapatite composite resin. Biomaterials. 1994;15:156–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu YK, Park JB, Njus GO, Stienstra D. Bone-particle-impregnated bone cement: an in vitro study. J Biomed Mater Res. 1987;21:247–61.CrossRefPubMedGoogle Scholar
  34. 34.
    Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38:155–82.CrossRefPubMedADSGoogle Scholar
  35. 35.
    Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res. 2006;79A:804–12.CrossRefGoogle Scholar
  36. 36.
    Ni GX, Chiu KY, Lu WW, Wang Y, Zhang YG, Hao LB, et al. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials. 2006;27:4348–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Rehabilitation MedicineFujian Medical UniversityFuzhouChina
  2. 2.Department of Orthopaedic Surgery, No. 1 Affiliated HospitalFujian Medical UniversityFuzhouChina
  3. 3.Department of Orthopaedics and TraumatologyThe University of Hong KongHong KongHong Kong

Personalised recommendations