Skip to main content

Advertisement

Log in

Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2010

Abstract

It is uncertain whether the use of bioactive bone cement has any beneficial effect on local bone adaptation following hip replacement. In this study, twelve goats underwent cemented hip hemiarthroplasty unilaterally, with either PMMA bone cement or strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement. Nine months later, the femoral cortical bones at different levels were analyzed by microhardness testing and micro-CT scanning. Extensive bone remodeling was found at proximal and mid-levels in both PMMA and Sr-HA groups. However, with regard to the differences of bone mineral density, cortical bone area and bone hardness between implanted and non-implanted femur, less decreases were found in Sr-HA group than PMMA group at proximal and mid-levels, and significant differences were shown for bone area and hardness at proximal level. The results suggested that the use of Sr-HA cement might alleviate femoral bone remodeling after hip replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shorr E, Carter AC. The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man. Bull Hosp Jt Dis Orthop Inst. 1952;13:59–66.

    CAS  Google Scholar 

  2. Takahashi N, Sasaki T, Suda T, Tsouderos Y. S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res. 2003;18:1082–7.

    Article  CAS  PubMed  Google Scholar 

  3. Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol. 2002;450:11–7.

    Article  CAS  PubMed  Google Scholar 

  4. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.

    Article  CAS  PubMed  Google Scholar 

  5. Barbara A, Delannoy P, Denis BG, Marie PJ. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism. 2004;53:532–7.

    Article  CAS  PubMed  Google Scholar 

  6. Delannoy P, Bazot D, Marie PJ. Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism. 2002;51:906–11.

    Article  CAS  PubMed  Google Scholar 

  7. Modrowski D, Miravet L, Feuga M, Marie PJ. Increased proliferation of osteoblast precursor cells in estrogen-deficient rats. Am J Physiol. 1993;264(2 pt 1):E190–6.

    CAS  PubMed  Google Scholar 

  8. Hott M, Deloffre P, Tsouderos Y, Marie PJ. S12911-2 reduces bone loss induced by short-term immobilization in rats. Bone. 2003;33:115–23.

    Article  CAS  PubMed  Google Scholar 

  9. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459–68.

    Article  CAS  PubMed  Google Scholar 

  10. Marie PJ. Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone. 2006;38:S10–4.

    Article  CAS  PubMed  Google Scholar 

  11. Johal KK, Mendoza-Suarez G, Escalante-Garcia JI. In vivo response of strontium and zince-based ionomeric cement implants in bone. J Mater Sci: Mater Med. 2002;13:375–9.

    Article  CAS  Google Scholar 

  12. Christoffersen J, Christoffersen MR, Kolthoff N. Effects of strontium ions on growth and dissolution of hydroxtapatite and on bone mineral detection. Bone. 1997;20:47–52.

    Article  CAS  PubMed  Google Scholar 

  13. Chen DM, Fu YF, Gu GZ. Preparation and solubility of the solid solution of strontium substituted hydroxyapatite. Chin J Biomed Eng. 2003;20:278–82.

    ADS  Google Scholar 

  14. Chen DM, Fu YF. Evaluation on the mechanic properties of the solid solution of strontium substituted hydroxyapatite. Chin J Stoma Mater Appar. 2001;19:178–83.

    CAS  Google Scholar 

  15. Duncan C, Masterson E, Masri B. Impaction allografting with cement for the management of femoral bone loss. Orthop Clin North Am. 1998;29:297–305.

    Article  CAS  PubMed  Google Scholar 

  16. Li YW, Leong JCY, Lu WW, Luk KDK, Cheung KMC, Chiu KY, et al. A novel injectable bioactive bone cement for spinal surgery: a development and preclinical study. J Biomed Mater Res. 2000;52:164–70.

    Article  CAS  PubMed  Google Scholar 

  17. Ni GX, Lu WW, Chiu KY, Li ZY, Fong DY, Luk KD. Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study. J Biomed Mater Res. 2006;77B:409–15.

    Article  CAS  Google Scholar 

  18. Wong CT, Lu WW, Chan WK, Cheung KMC, Luk KDK, Lu DS, et al. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement. J Biomed Mater Res. 2004;68A:513–21.

    Article  CAS  Google Scholar 

  19. Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, et al. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials. 2006;27:5127–33.

    Article  CAS  PubMed  Google Scholar 

  20. Chen QZ, Wong CT, Lu WW, Cheung KMC, Leong JCY, Luk KDK. Strengthening mechanism of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials. 2004;25:4243–54.

    Article  CAS  PubMed  Google Scholar 

  21. Ni GX, Lu WW, Chiu KY, Wang Y, Li ZY, Zhang YG, et al. Mechanical properties of femoral cortical bone following cemented hip replacement. J Orthop Res. 2007;25(11):1408–14.

    Article  CAS  PubMed  Google Scholar 

  22. Freeman MAR, Bradley GW, Revell PA. Observation upon the interface between bone and polymethylmethacrylate cement. J Bone J Surg. 1982;64B:489–93.

    Google Scholar 

  23. Jasty M, Maloney WJ, Bragdon CR, Haire T, Harris WH. Histomorphological studies of the long-term skeletal responses to well fixed cemented femoral component. J Bone J Surg. 1990;72A:1220–5.

    Google Scholar 

  24. Harper EJ. Bioactive bone cements. Proc Instn Mech Engrs. 1998;212:113–8.

    CAS  Google Scholar 

  25. Huiskes R. The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop. 1990;261:27–38.

    PubMed  Google Scholar 

  26. Oh I, Harris WH. Proximal strain distribution in the loaded femur. J Bone Joint Surg. 1978;60A:75–85.

    Google Scholar 

  27. Silva MJ, Reed KL, Robertson DD, et al. Reduced bone stress as predicted by composite beam theory correlates with cortical bone loss following total hip arthroplasty. J Orthop Res. 1999;17:525–31.

    Article  CAS  PubMed  Google Scholar 

  28. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE. The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop. 1990;261:196–213.

    PubMed  Google Scholar 

  29. Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop. 1988;231:7–28.

    PubMed  Google Scholar 

  30. Fujita H, Matsuda Y, Iida H, et al. Evaluation of bioactive bone cement in canine total hip arthroplasty. J Biomed Mater Res. 2000;49:273–88.

    Article  CAS  PubMed  Google Scholar 

  31. Labella R, Braden M, Deb S. Novel hydroxyapatite-based dental composites. Biomaterials. 1994;15:1197–200.

    Article  CAS  PubMed  Google Scholar 

  32. Saito M, Muraoka A, Mori T, Sugano N, Hino K. Experimental studies on a new bioactive bone cement: hydroxyapatite composite resin. Biomaterials. 1994;15:156–60.

    Article  CAS  PubMed  Google Scholar 

  33. Liu YK, Park JB, Njus GO, Stienstra D. Bone-particle-impregnated bone cement: an in vitro study. J Biomed Mater Res. 1987;21:247–61.

    Article  CAS  PubMed  Google Scholar 

  34. Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38:155–82.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res. 2006;79A:804–12.

    Article  CAS  Google Scholar 

  36. Ni GX, Chiu KY, Lu WW, Wang Y, Zhang YG, Hao LB, et al. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials. 2006;27:4348–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was partially supported by Fujian Young Talent Project (2007F3040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo X. Ni or William W. Lu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10856-010-4033-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, G.X., Lin, J.H., Chiu, P.K.Y. et al. Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. J Mater Sci: Mater Med 21, 377–384 (2010). https://doi.org/10.1007/s10856-009-3866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3866-2

Keywords

Navigation