Skip to main content
Log in

Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Many biomaterials are being developed to be used for cartilage substitution and hemiarthroplasty implants. The lubrication property is a key feature of the artificial cartilage. The frictional behavior of human articular cartilage, stainless steel and polyvinyl alcohol (PVA) hydrogel were investigated under cartilage-on-PVA hydrogel contact, cartilage-on-cartilage contact and cartilage-on-stainless steel contact using pin-on-plate method. Tests under static load, cyclic load and 1 min load change were used to evaluate friction variations in reciprocating motion. The results showed that the lubrication property of cartilage-on-PVA hydrogel contact and cartilage-on-stainless steel contact were restored in both 1 min load change and cyclic load tests. The friction coefficient of PVA hydrogel decreased from 0.178 to 0.076 in 60 min, which was almost one-third of the value under static load in continuous sliding tests. In each test, the friction coefficient of cartilage-on-cartilage contact maintained far lower value than other contacts. It is indicated that a key feature of artificial cartilage is the biphasic lubrication properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Linn FC. Lubrication of animal joints. II The mechanism. J Biomechanics. 1968;1(3):193–205.

    Article  CAS  Google Scholar 

  2. Wright V, Dowson D. Lubrication and cartilage. J Anat. 1976;121(1):107–18.

    CAS  PubMed  Google Scholar 

  3. Buckwalter, JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;402:21–37.

    Google Scholar 

  4. Unsworth A. Recent developments in the tribology of artificial joints. Tribol Int. 1995;28(7):485–95.

    Article  CAS  Google Scholar 

  5. Benevenia J, et al. Pathologic supracondylar fracture due to osteolytic pseudotumor of knee following cementless total knee replacement. J Biomed Mater Res. 1998;43(4):473–7.

    Article  CAS  PubMed  Google Scholar 

  6. Engh GA, Dwyer KA, Hanes CK. Polyethylene wear of metal-backed tibial components in total and unicompartmental knee prostheses. J Bone Joint Surg B. 1992;74(1):9–17.

    CAS  Google Scholar 

  7. Delecrin, J, Oka M, Kumar P. Joint reactions against polymer particles: PVA-H versus UHMWPE. J Jpn Orthop Assoc. 1990;64.

  8. Noguchi T, et al. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility. J Appl Biomater. 1991;2(2):101–7.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  9. Oka M, et al. Development of artificial articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 2000;214(1):59–68.

    Google Scholar 

  10. Oka M, et al. Development of an artificial articular cartilage. Clin Mater. 1990;6(4):361–81.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  11. Covert RJ, Ott RD, Ku DN. Friction characteristics of a potential articular cartilage biomaterial. Wear. 2003;255(7–12):1064–8.

    Article  CAS  Google Scholar 

  12. Pan YS, Xiong DS, Ma RY. A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 2007;262(7–8):1021–5.

    Article  CAS  Google Scholar 

  13. Forster H, Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 1999;213(4):329–45.

    Google Scholar 

  14. Katta J, et al. Effect of load variation on the friction properties of articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part J. J Eng Tribol. 2007;221(3):175–81.

    Google Scholar 

  15. Northwood E, Fisher J. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage. Clin Biomech. 2007;22(7):834–42.

    Article  Google Scholar 

  16. Pickard JE, et al. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials. 1998;19(19):1807–12.

    Article  CAS  PubMed  Google Scholar 

  17. Hyon SH, Cha WI, Ikada Y. Preparation of transparent poly(vinyl alcohol) hydrogel. Polym Bull. 1989;22(2):119–22.

    Article  CAS  Google Scholar 

  18. Bloebaum RD, Wilson AS. The morphology of the surface of articular cartilage in adult rats. J Anat. 1980;131(2):333–46.

    CAS  PubMed  Google Scholar 

  19. Caligaris M, Ateshian GA. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthritis Cartilage. 2008;16(10):1220–7.

    Article  CAS  PubMed  Google Scholar 

  20. Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 1996;210(2):109–18.

    Google Scholar 

  21. Krishnan R, Kopacz M, Ateshian GA. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 2004;22(3):565–70.

    Article  PubMed  Google Scholar 

  22. Mabuchi K, et al. The effect of additive hyaluronic acid on animal joints with experimentally reduced lubricating ability. J Biomed Mater Res. 1994;28(8):865–70.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts BJ, Unsworth A, Mian N. Modes of lubrication in human hip joints. Ann Rheum Dis. 1982;41(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  24. Shirley Jones E. Joint lubrication. Lancet. 1936;227(5879):1043–5.

    Article  Google Scholar 

  25. Bell CJ, Ingham E, Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 2006;220(1):23–31.

    Google Scholar 

  26. Northwood E, Fisher J, Kowalski R. Investigation of the friction and surface degradation of innovative chondroplasty materials against articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H. J Eng Med. 2007;221(3):263–79.

    Google Scholar 

  27. Mow VC, Lai WM. Recent developments in synovial joint biomechanics. SIAM Rev. 1980;22(3):275–317.

    Article  MATH  MathSciNet  Google Scholar 

  28. Crockett R, et al. Imaging of the surface of human and bovine articular cartilage with ESEM and AFM. Tribol Lett. 2005;19(4):311–7.

    Article  CAS  Google Scholar 

  29. Kobayashi S, Yonekubo S, Kurogouchi Y. Cryoscanning electron microscopic study of the surface amorphous layer of articular cartilage. J Anat. 1995;187(2):429–44.

    PubMed  Google Scholar 

  30. Orford CR, Gardner DL. Ultrastructural histochemistry of the surface lamina of normal articular cartilage. Histochem J. 1985;17(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  31. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials. 1996;17(17):1647–57.

    Article  CAS  PubMed  Google Scholar 

  32. Stammen JA, et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials. 2001;22(8):799–806.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the national natural science foundation of China (No. 50535050). Articular cartilage donations by Shanghai Changzheng hospital were greatly appreciated. Many thanks to Prof. Zhang Dekun, Dr. Wang Shibo and Dr. Meng Baoxing of China University of Mining and Technology for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengtao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Su, Y., Wang, J. et al. Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage. J Mater Sci: Mater Med 21, 147–154 (2010). https://doi.org/10.1007/s10856-009-3863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3863-5

Keywords

Navigation