Skip to main content
Log in

The mesoporosity of microparticles spray dried from trehalose and nanoparticle hydroxyapatite depends on the ratio of nanoparticles to sugar and nanoparticle surface charge

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The ratio of hydroxyapatite (HA) nanoparticles (NP) to trehalose in composite microparticle (MP) vaccine vehicles by determining inter-nanoparticle space potentially influences antigen release. Mercury porosimetry and gas adsorption analysis have been used quantify this space. Larger pores are present in MPs spray dried solely from nanoparticle gel compared with MPs spray dried from nanoparticle colloid which have less inter-nanoparticle volume. This is attributed to tighter nanoparticle packing caused by citrate modification of their surface charge. The pore size distributions (PSD) for MP where the trehalose has been eliminated by combustion generally broaden and shifts to higher values with increasing initial trehalose content. Modal pore size, for gel derived MPs is comparable to modal NP width below 30% initial trehalose content and approximates to modal NP length (~50 nm) at 60% initial trehalose content. For colloidally derived MPs this never exceeds the modal NP width. Pore-sizes are comparable, to surface inter-nanoparticle spacings observed by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, et al. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009;30:3307–17.

    Article  CAS  PubMed  Google Scholar 

  2. Wright DM, Rickard JJ, Kyle N, Gard T, Dobberstein H, Motskin M, et al. The use of dual beam ESEM FIB to reveal the internal ultrastructure of hydroxyapatite nanoparticle-sugar-glass composites. J Mater Sci Med. 2009;20:203–14.

    Article  CAS  Google Scholar 

  3. Midgley PA, Dunin-Borkowski RE. Electron tomography and holography in materials science. Nat Mater. 2009;8:271–80.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Joyner LG, Barrett EP, Skold R. The determination of pore volume and area distribution in porous substances. Comparison between nitrogen isotherm and mercury porosimeter methods. J Am Chem Soc. 1951;73:3155–8.

    Article  CAS  Google Scholar 

  5. Washburn EW. The dynamics of capillary flow. Phys Rev. 1921;17:273–83.

    Article  ADS  Google Scholar 

  6. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, PErnicone N, et al. Recommendations for the characterization of porous solids. Pure Appl Chem. 1994;66:1739–58.

    Article  CAS  Google Scholar 

  7. Diamond S. A re-evaluation of hardened cement paste microstructure based on backscatter SEM investigations. Cem Concr Res. 2000;30:1517–25.

    Article  CAS  Google Scholar 

  8. Tuan Ho S, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27:1362–76.

    Article  Google Scholar 

  9. Padilla S, Román J, Vallet-Regí M. Synthesis of porous hydroxyapatites by combination of gelcasting and foams burn out methods. J Mater Sci Med. 2002;13:1193–7.

    Article  CAS  Google Scholar 

  10. Kaneko K. Determination of pore size and pore size distribution 1. Adsorbents and catalysts. J Membr Sci. 1994;96:59–89.

    Article  CAS  Google Scholar 

  11. Webb PA, Orr C. Analytical methods in fine particle technology, Micromeritics; 1997.

  12. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  ADS  Google Scholar 

  13. Barrett EP, Joyner LG, Halenda PP. J Am Chem Soc. The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. 1951;73:373–80.

    Article  CAS  Google Scholar 

  14. Cracknell RF, Gubbins KE, Maddox M, Nicholson D. Behavior in well-characterized porous materials. Acc Chem Res. 1995;28:281–8.

    Article  CAS  Google Scholar 

  15. Kumta PN, Sfeir C, Lee DH, Olton D, Choi D. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 2005;1:65–83.

    Article  PubMed  Google Scholar 

  16. Groen JC, Peffer LAA, Perez-Ramirez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003;60:1–17.

    Article  CAS  Google Scholar 

  17. Ciftcioglu M, Smith DM, Ross SB. Mercury porosimetry of ordered sphere compacts: Investigation of intrusion and extrusion pore size distributions. Powder Technol. 1988;55:193–205.

    Article  CAS  Google Scholar 

  18. Portsmouth RL, Gladden LF. Determination of pore connectivity by mercury porosimetry. Chem Eng Sci. 1991;46:3023–36.

    Article  CAS  Google Scholar 

  19. Jiang W, Pan H, Cai Y, Tao J, Liu P, Xu X, et al. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level. Langmuir. 2008;24:12446–51.

    Article  CAS  PubMed  Google Scholar 

  20. Bertinetti L, Tampieri A, Landi E, Ducati C, Midgley PA, Coluccia S, et al. Surface structure, hydration, and cationic sites of nanohydroxyapatite: UHR-TEM, IR, and microgravimetric studies. J Phys Chem C. 2007;111(10):4027–35.

    Article  CAS  Google Scholar 

  21. Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G, et al. Nanocrystalline apatites: from powders to biomaterials. Powder Technol. 2009;190(1–2):118–22.

    Article  CAS  Google Scholar 

  22. Chow LC, Sun LM, Hockey B. Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol. 2004;109(6):543–51.

    CAS  Google Scholar 

  23. Colilla M, Manzano M, Vallet-Regi M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomed. 2008;3:403–14.

    CAS  Google Scholar 

  24. CHen LH, Zhu GS, Zhang DL, Zhao H, Guo MY, Wei SB, et al. Novel mesoporous silica spheres with ultra-large pore sizes and their application in protein separation. J Mater Chem. 2009;19(14):2013–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a DTI grant (CHBS/004/00063C) held jointly by J. N. Skepper at the University of Cambridge and Cambridge Biostability Ltd. We would like to thank Wayne Hough for his assistance in running samples for Mercury Porosimetry and Dr. Serena Best for access to equipment run within her laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, D.M., Saracevic, Z.S., Kyle, N.H. et al. The mesoporosity of microparticles spray dried from trehalose and nanoparticle hydroxyapatite depends on the ratio of nanoparticles to sugar and nanoparticle surface charge. J Mater Sci: Mater Med 21, 189–206 (2010). https://doi.org/10.1007/s10856-009-3858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3858-2

Keywords

Navigation