Skip to main content

Advertisement

Log in

Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The three-dimensional, highly oriented pore channel anatomy of native rattan (Calamus rotang) was used as a template to fabricate biomorphous hydroxyapatite (Ca5(PO4)3OH) ceramics designed for bone regeneration scaffolds. A low viscous hydroxyapatite-sol was prepared from triethyl phosphite and calcium nitrate tetrahydrate and repeatedly vacuum infiltrated into the native template. The template was subsequently pyrolysed at 800°C to form a biocarbon replica of the native tissue. Heat treatment at 1,300°C in air atmosphere caused oxidation of the carbon skeleton and sintering of the hydroxyapatite. SEM analysis confirmed detailed replication of rattan anatomy. Porosity of the samples measured by mercury porosimetry showed a multimodal pore size distribution in the range of 300 nm to 300 μm. Phase composition was determined by XRD and FT-IR revealing hydroxyapatite as the dominant phase with minimum fractions of CaO and Ca3(PO4)2. The biomorphous scaffolds with a total porosity of 70–80% obtained a compressive strength of 3–5 MPa in axial direction and 1–2 MPa in radial direction of the pore channel orientation. Bending strength was determined in a coaxial double ring test resulting in a maximum bending strength of ~2 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hing KA, Best SM, Bonfield W. Characterization of porous hydroxyapatite. J Mater Sci: Mater Med. 1999;10:135–45.

    Article  CAS  Google Scholar 

  2. Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, et al. Synthesis of carbonated hydroxyapatite: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 2005;744–747:221–8.

    Article  Google Scholar 

  3. Qian J, Kang Y, Zhang W, Li Z. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite. J Mater Sci: Mater Med. 2008;19:3373–83.

    Article  CAS  Google Scholar 

  4. LeGeros RZ. Apatites in biological systems. Prog Cryst Grow Char. 1981;4:1–45.

    Article  CAS  Google Scholar 

  5. Hench LL. Bioceramics, from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  6. Tampieri A, Celotti G, Landi E, Montevecchi M, Roveri N, Bigi A, et al. Porous phosphate-gelatine composite as bone graft with drug delivery function. J Mater Sci: Mater Med. 2003;14:623–7.

    Article  CAS  Google Scholar 

  7. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, et al. In vitro osteogenesis on a highly bioactive glass–ceramic (Biosilicate®). J Biomed Mater Res. 2007;82A:545–57.

    Article  CAS  Google Scholar 

  8. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  PubMed  Google Scholar 

  9. Hubert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal protheses. J Biomed Mater Res. 1970;4:190–9.

    Google Scholar 

  10. Sopyan I, Kaur J, Toibah JAR, Hamdi M, Ramesh S. Effect of slurry preparation on physical properties of porous hydroxyapatite prepared via polymeric sponge method. Adv Mater Res. 2008;47–50:932–5.

    Article  Google Scholar 

  11. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–27.

    Google Scholar 

  12. Will J, Melcher R, Treul C, Travitzky N, Kneser U, Polykandriotis E, et al. Porous bone scaffolds for vascularized bone tissue regeneration. J Mater Sci: Mater Med. 2008;19:2781–90.

    Article  CAS  Google Scholar 

  13. Kim H-W, Kim H-E, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater. 2006;16:1529–35.

    Article  Google Scholar 

  14. Helen W, Merry CLR, Blaker JJ, Gough JE. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass® composite foam scaffolds: assessment of cell attachment, proliferation and extracellular matrix production. Biomaterials. 2007;28:2010–20.

    Article  CAS  PubMed  Google Scholar 

  15. Tadic D, Beckmann F, Schwarz K, Epple M. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials. 2004;25:3335–40.

    Article  CAS  PubMed  Google Scholar 

  16. Vitale Brovarone C, Verné E, Appendino P. Macroporous bioactive glass–ceramic scaffolds for tissue engineering. J Mater Sci: Mater Med. 2006;17:1069–78.

    Article  Google Scholar 

  17. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27:5480–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ramay HR, Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials. 2003;24:3293–302.

    Article  CAS  PubMed  Google Scholar 

  19. Murugan R, Panduranga RK, Sampath KTS. Microwave synthesis of bioresorbable carbonated hydroxyapatite using goniopora. Key Eng Mater. 2003;240–242:51–4.

    Article  Google Scholar 

  20. Kannan S, Rocha JHG, Agathopolulos S, Ferreira JMF. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 2007;3:243.

    Article  CAS  PubMed  Google Scholar 

  21. Worth A, Mucalo M, Horne G, Bruce W, Burbidge H. The evaluation of processed cancellous bovine bone as a bone graft substitute. Clin Oral Implants Res. 2005;16:379–86.

    Article  PubMed  Google Scholar 

  22. Tampieri A, Sprio S, Ruffini A, Celotti G, Lesci G, Roveri N. From wood to bone: multi step-process to convert wood hierarchical structures into mimetic hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem. 2009;19:4973–80.

    Article  CAS  Google Scholar 

  23. Singh M, Martínez-Fernández J, de Arellano-López AR. Environmentally conscious ceramics (ecoceramics) from natural wood precursors. Curr Opinion Solid State Mater Sci. 2003;7:247–54.

    Article  CAS  Google Scholar 

  24. Sieber H. Biomimetic synthesis of ceramics and ceramic composites. Mater Sci Eng A. 2005;412:43–7.

    Article  Google Scholar 

  25. Cao J. Biotemplating of highly porous oxide ceramics. Göttingen/D: Cuvillier Verlag; 2005.

  26. Rambo CR, Sieber H. Novel synthetic route to biomorphic Al2O3 ceramics. Adv Mater. 2005;17:1088–91.

    Article  CAS  Google Scholar 

  27. Jones JR, Hench LL. Regeneration of trabecular bone using porous ceramics. Curr Opinion Solid State Mater Sci. 2003;7:301–7.

    Article  CAS  Google Scholar 

  28. Hartung C. Zur Biomechanik weicher Gewebe. VDI Fortschrittsberichte. Reihe Biotechnik. 1975;17(2):91.

  29. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int. 1989;45:157–64.

    Article  CAS  PubMed  Google Scholar 

  30. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res A. 2002;62:600–12.

    Article  CAS  Google Scholar 

  31. Liu D-M, Trczynski T, Tseng WJ. Water.based sol–gel synthesis of hydroxyapatite: üprocess development. Biomaterials. 2001;22:1721–30.

    Article  CAS  PubMed  Google Scholar 

  32. Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc. 2008;28:139–47.

    Article  CAS  Google Scholar 

  33. Welch JH, Gutt W. High-temperature studies of the system calcium oxide-phosphorus pentoxide. J Chem Soc. 1961;IV:4442–4.

    Article  Google Scholar 

  34. Liu D-M, Troczynski T, Tseng WJ. Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials. 2002;23:1227–36.

    Article  CAS  PubMed  Google Scholar 

  35. de Groot K, Klein CPAT, Wolke JGC, de Blieck Hogervorst JMA. Chemistry of calcium phosphate bioceramics. In: Yamamuro T, Hench LL, Wilson J, editors. CRC handbook of bioactive ceramics, calcium phosphate and hydroxyapatite ceramics, vol. II. Boca Raton, FL: CRC Press; 1990. p. 3–16.

    Google Scholar 

  36. Gibson LJ, Ashby MF. Cellular solids, structure and properties. New York: Pergammon Press; 1988.

    MATH  Google Scholar 

  37. Greil P. Biomorphous ceramics from lignocellulosics. J Eur Ceram Soc. 2001;21:105–18.

    Article  CAS  Google Scholar 

  38. Schmitt G, Weiner U, Liese W. The fine structure of the stegmata in Calamus Axillaris during maturation. JAWA J. 1995;16:61–8.

    Google Scholar 

Download references

Acknowledgement

The authors greatfully acknowledge the EU commission for the financial support under the FP6 number NMP4-CT-2006-033277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Will.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichenseer, C., Will, J., Rampf, M. et al. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang). J Mater Sci: Mater Med 21, 131–137 (2010). https://doi.org/10.1007/s10856-009-3857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3857-3

Keywords

Navigation