Skip to main content

Advertisement

Log in

Hardness properties and microscopic investigation of crack–crystal interaction in SiO2–MgO–Al2O3–K2O–B2O3–F glass ceramic system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass–ceramics having different crystal morphologies with SiO2–MgO–Al2O3–K2O–B2O3–F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass–ceramics containing plate like mica crystals. Scratch tests at a high load of 50 N in artificial saliva were carried out in order to simulate the crack–microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel “spherulitic-dendritic” shaped crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the ‘spherulitic-dendritic’ crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent. While modest damage tolerant behavior is observed in case of ‘spherulitic-dendritic’ crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. FEI QUANTA 200, The Netherlands.

  2. Isodebyeflex 2002, USA.

  3. Carl Zeiss Jena, Germany.

  4. TR 101, Ducom, Bangalore, India.

  5. PC5500, Eutech Instruments, USA.

References

  1. Vogel W, Höland W, Kaumann K. Development of machinable bioactive glass–ceramics for medical uses. J Non-Cryst Solids. 1986;80:34–51.

    Article  CAS  ADS  Google Scholar 

  2. Chaudhry MA, Jonscher AK. High-temperature dielectric properties of ruby mica perpendicular to the cleavage planes. J Mater Sci. 1988;23:208–16.

    Article  CAS  ADS  Google Scholar 

  3. Holand W, Vogel W. Machineable and phosphate glass ceramics. In: Hench LL, Wilson J, editors. Introduction to bioceramics. Singapore: World Scientific; 1993. pp. 125–38.

    Google Scholar 

  4. Holand W, Beall G. Glass–ceramic technology. Westerville, OH: The American Ceramic Society; 2002.

    Google Scholar 

  5. Cheng K, Wan J, Liang K. Crystallization of R2O–MgO–Al2O3–B2O3–SiO2–F (R = K+, Na+) glasses with different fluorine sources. Mater Lett. 2001;47:1–6.

    Article  CAS  Google Scholar 

  6. Hoche T, Habelitz S, Avramov I. Crystal morphology engineering in SiO2–Al2O3–MgO–K2O–Na2O–F mica glass–ceramics. Acta Mater. 1998;PII:S1359–6454; 00424–8.

    Google Scholar 

  7. Gebhardt A, Hoche T, Carl G, Khodos II. TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass–ceramics. Acta Mater. 1999;47(17):4427–34.

    Article  CAS  Google Scholar 

  8. Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater. 2003;19:603–11.

    Article  CAS  PubMed  Google Scholar 

  9. Höche T, Habelitz S, Khoodos II. Origin of unusual fluorophlogopite morphology in mica glass–ceramics of the system SiO2–Al2O3–MgO–K2O–Na2O–F2. J Cryst Growth. 1998;192:185–95.

    Article  Google Scholar 

  10. Boccaccini AR. Machinability and brittleness of glass–ceramics. J Mater Process Technol. 1997;65:302–4.

    Article  Google Scholar 

  11. Ma XP, Li GX, Shen L, Jin ZH. Ductile-mode material removal of a mica–glass–ceramic. J Am Ceram Soc. 2003;86(6):1040–2.

    Article  CAS  Google Scholar 

  12. Lawn BR, Padture NP, Cai H, Guiberteau F. Making ceramics ‘ductile’. Science. 1994;263:1114–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Baik DS, No KS, Chun JS, Cho HY. Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass–ceramics. J Mater Process Technol. 1997;67:50–4.

    Article  Google Scholar 

  14. Grossman DG. Machinable glass–ceramics based on tetrasilicic mica. J Am Ceram Soc. 1972;55(9):446–9.

    Article  CAS  Google Scholar 

  15. Xu HK, Jahanmir S. Scratching and grinding of a machinable glass–ceramic with weak interfaces and rising T-curve. J Am Ceram Soc. 1995;78:497–500.

    Article  CAS  Google Scholar 

  16. Flanders LA, Quinn JB, Wilson OC Jr, Lloyd IK. Scratch hardness and chipping of dental ceramics under different environments. Dent Mater. 2003;19:716–24.

    Article  CAS  PubMed  Google Scholar 

  17. Roy S, Basu B. On the development of two characteristically different crystal morphology in SiO2–MgO–Al2O3–K2O–B2O3–F glass–ceramic system. J Mater Sci: Mater Med. 2008;20(1):51–66.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  18. Roy S, Basu B. In vitro dissolution behavior of SiO2–MgO–Al2O3–K2O–B2O3–F glass–ceramic system. J Mater Sci: Mater Med. 2008;19:3123–33.

    Article  CAS  Google Scholar 

  19. Roy S. Microstructure development and in-vitro properties of Macor Glass–ceramic, M. Tech Thesis, IIT Kanpur, India, May 2005.

  20. Guedes A, Pinto AMP, Vieira M, Viana F. Multilayered interface in Ti:Macor® machinable glass–ceramic joints. Mater Sci Eng A. 2001;301:118–24.

    Article  Google Scholar 

  21. Wange P, Höche T, Rüssel C, Schnapp JD. Microstructure-property relationship in high-strength MgO–Al2O3–SiO2–TiO2 glass–ceramics. J Non-Cryst Solids. 2002;298:137–45.

    Article  CAS  ADS  Google Scholar 

  22. Karamanov A, Pelino M. Evaluation of the degree of crystallization in glass–ceramics by density measurements. J Eur Ceram Soc. 1999;19:649-54.

    Article  CAS  Google Scholar 

  23. Roy S, Basu B. Mechanical and tribological characterization of human tooth. Mater Charact. 2008;59:747–56.

    Article  CAS  Google Scholar 

  24. Li H, Zhou ZR. Wear behaviour of human teeth in dry and artificial saliva conditions. Wear. 2002;249:980–4.

    Article  Google Scholar 

  25. Uhlmann DR. Crystal growth in glass-forming systems—a review. In: Hench LL, Freiman FW, editors. Advances in nucleation and crystallization in glasses, special publication 5. Columbus, OH: American Ceramic Society; 1971. pp. 91–115.

  26. Cripps ACF, Lawn BR. Indentation stress–strain curves for ‘quasi-ductile’ ceramics. Acta Mater. 1996;44(2):519–27.

    Article  Google Scholar 

  27. Peterson IM, Wuttiphan S, Lawn BR, Chyung K. Role of microstructure on contact damage and strength degradation of micaceous glass–ceramic. Dent Mater. 1998;14(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  28. Saraswati V, Raoot S. Machinable mica-based glass–ceramic. J Mater Sci. 1992;27:429–32.

    Article  CAS  ADS  Google Scholar 

  29. Henry J, Hill RG. The influence of lithia content on the properties of fluorphlogopite glass–ceramics. II. Microstructure hardness and machinability. J Non-Cryst Solids. 2003;319:13–30.

    Article  CAS  ADS  Google Scholar 

  30. Taruta S, Mukoyama K, Suzuki SS, Kitajima K, Takusagawa N. Crystallization process and some properties of calcium mica–apatite glass–ceramics. J Non-Cryst Solids. 2001;296:201–11.

    Article  CAS  ADS  Google Scholar 

  31. Davis JB, Marshall DB, Housley RM, Morgan PED. Machinable ceramics containing rare-earth phosphates. J Am Ceram Soc. 1998;81:2169–75.

    Article  CAS  Google Scholar 

  32. Goswami M, Sarkar A, Mirza T, Shrikhande VK, Sangeeta, Gurumurthy KR, et al. Study of some thermal and mechanical properties of magnesium aluminium silicate glass–ceramic. Ceram Int. 2002;28:585–92.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Basu, B. Hardness properties and microscopic investigation of crack–crystal interaction in SiO2–MgO–Al2O3–K2O–B2O3–F glass ceramic system. J Mater Sci: Mater Med 21, 109–122 (2010). https://doi.org/10.1007/s10856-009-3853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3853-7

Keywords

Navigation