Skip to main content
Log in

Hydrophilic/lipophilic N-methylene phosphonic chitosan as a promising non-viral vector for gene delivery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Cationic amphiphilic drugs have recently been shown to inhibit receptor recycling by disrupting the assembly–disassembly of clathrin at the plasma membrane and endosomes. It is therefore proposed that amphiphilic and cationic polysaccharide macromolecule, when used as gene delivery vectors, may have potential ability to direct the disassembly process of cell membrane organization, and penetrate across the cell membrane into cell and nucleus. In the current study, N-methylene phosphonic chitosan (NMPCS), an amphiphilic macromolecule, was synthesized by incorporating the methylene phosphonic group into the amino groups of chitosan (CS) using formaldehyde as the coupling agent, and characterized with a FTIR spectrometer. NMPCS/DNA or CS/DNA complexes were prepared using a complex coacervation method, and characterized by agarose gel electrophoresis retardation assay and dynamic light scattering (DLS). MTT assay was employed to evaluate the cytotoxicity of the polymers and pGL3-control luciferase plasmid was utilized as a reporter gene to assess the transgenic efficacy of the polymers. It was demonstrated that NMPCS was able to fully entrap the DNA at N/P ratio of 2:1, whereas CS entrapped the DNA completely at N/P ratio of 1:1. DLS showed that the NMPCS/DNA or CS/DNA complexes were of mean diameters ranging from 110 to 180 nm. Neither NMPCS nor CS induced significant loss of cell viability at the concentrations ranging from 1 to 50 μg/ml, whereas PEI at 5 μg/ml started to result in significantly decreased cell viability. The expression of transgene mediated by NMPCS was much higher (more than 100-folds) than that mediated by CS, indicating that NMPCS was a more efficacious gene ferrying vector than CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamada T, Iwasaki Y, Tada H, Iwabuki H, Chuah MK, Vanden Driessche T, et al. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol. 2003;21:885–90. doi:10.1038/nbt843.

    Article  CAS  PubMed  Google Scholar 

  2. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan−DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5:387–91. doi:10.1038/7385.

    Article  CAS  PubMed  Google Scholar 

  3. Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm. 1998;24:979–93. doi:10.3109/03639049809089942.

    Article  CAS  PubMed  Google Scholar 

  4. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15:1326–31. doi:10.1023/A:1011929016601.

    Article  CAS  PubMed  Google Scholar 

  5. Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, et al. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials. 2005;26:2147–56. doi:10.1016/j.biomaterials.2004.07.008.

    Article  CAS  PubMed  Google Scholar 

  6. Murata JI, Ohya Y, Ouchi T. Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool. Carbohydr Polym. 1997;32:105–9. doi:10.1016/S0144-8617(96)00154-3.

    Article  CAS  Google Scholar 

  7. Gao S, Chen J, Xu X, Ding Z, Yang YH, Hua Z, et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int J Pharm. 2003;255:57–68. doi:10.1016/S0378-5173(03)00082-6.

    Article  CAS  PubMed  Google Scholar 

  8. Kim TH, Ihm JE, Choi YJ, NahC JW, Cho S. Efficient gene delivery by urocanic acid-modified chitosan. J Control Release. 2003;93:389–402. doi:10.1016/j.jconrel.2003.08.017.

    Article  CAS  PubMed  Google Scholar 

  9. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials. 2006;27:2060–5. doi:10.1016/j.biomaterials.2005.09.020.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang T, Yu YY, Li D, Peng R, Li Y, Jiang Q, et al. Synthesis and properties of a novel methoxy poly(ethylene glycol)-modified galactosylated chitosan derivative. J Mater Sci: Mater Med. 2009;20:673–80. doi:10.1007/s10856-008-3620-1.

    Article  CAS  Google Scholar 

  11. Opanasopit P, Sajomsang W, Ruktanonchai U, Mayen V, Rojanarata T, Ngawhirunpat T. Methylated N-(4-pyridinylmethyl) chitosan as a novel effective safe gene carrier. Int J Pharm. 2008;364:127–34. doi:10.1016/j.ijpharm.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  12. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–21. doi:10.1126/science.1070821.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Lehn JM. Toward self-organization and complex matter. Science. 2002;295:2400–03. doi:10.1126/science.1071063.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297:967–73. doi:10.1126/science.1074972.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Sofer A, Futerman AH. Cationic amphiphilic drugs inhibit the internalization of cholera toxin to the golgi apparatus and the subsequent elevation of cyclic AMP. J Biol Chem. 1995;270:12117–22. doi:10.1074/jbc.270.20.12117.

    Article  CAS  PubMed  Google Scholar 

  16. Heras A, Rodríguez NM, Ramos VM, Agulló E. N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym. 2001;44:1–8. doi:10.1016/S0144-8617(00)00195-8.

    Article  CAS  Google Scholar 

  17. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70:399–421. doi:10.1016/S0168-3659(00)00361-8.

    Article  CAS  PubMed  Google Scholar 

  18. Intra J, Salem AK. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release. 2008;130:129–38. doi:10.1016/j.jconrel.2008.04.014.

    Article  CAS  PubMed  Google Scholar 

  19. Ramos VM, Rodríguez NM, Díaz MF, Rodríguez MS, Heras A, Agulló E. N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohyd Polym. 2003;52:39–46. doi:10.1016/S0144-8617(02)00264-3.

    Article  CAS  Google Scholar 

  20. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, et al. Polyethylenimine-graft-Poly(ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem. 2002;13:845–54. doi:10.1021/bc025529v.

    Article  CAS  PubMed  Google Scholar 

  21. Langer R. Drugs on target. Science. 2001;293:58–9. doi:10.1126/science.1063273.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang HL, Zhu DW, Yang J, Song LP, Bo JG, Yao KD, et al. Cellular uptake and cytotoxicity of modified chitosans as gene carriers. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006;28:486–91.

    CAS  PubMed  Google Scholar 

  23. Wang J, Gao SJ, Zhang PC, Wang S, Mao HQ, Leong KW. Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Ther. 2004;11:1001–10. doi:10.1038/sj.gt.3302248.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas M, Klibanov AM. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA. 2002;99:14640–5. doi:10.1073/pnas.192581499.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA. 2003;100:9138–43. doi:10.1073/pnas.1233634100.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22:2075–80. doi:10.1016/S0142-9612(00)00385-9.

    Article  CAS  PubMed  Google Scholar 

  27. Fang N, Chan V, Mao HQ, Leong KW. Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules. 2001;2:1161–8. doi:10.1021/bm015548s.

    Article  CAS  PubMed  Google Scholar 

  28. Hu FQ, Zhao MD, Yuan H, You J, Du YZ, Zeng S. A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: Properties and in vitro transfection studies. Int J Pharm. 2006;315:158–66. doi:10.1016/j.ijpharm.2006.02.026.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the Ministry of Science and Technology of China (Grant No: 2005DIB1J094, 2006CB933203) and the National Natural Science Foundation of China (Grant No: 50233020, 90406024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xigang Leng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Yao, K., Bo, J. et al. Hydrophilic/lipophilic N-methylene phosphonic chitosan as a promising non-viral vector for gene delivery. J Mater Sci: Mater Med 21, 223–229 (2010). https://doi.org/10.1007/s10856-009-3849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3849-3

Keywords

Navigation