Skip to main content

Advertisement

Log in

Evaluation of a novel radiopacifiying agent on the physical properties of surgical spineplex®

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polymethlylmethacrylate (PMMA) is the most frequently used cement for percutaneous vertebroplasty and kyphoplasty. To aid visualisation during surgery cements are doped with radiopacifying agents such as Barium sulphate (Ba2SO4) or Zirconium Dioxide (ZiO2). Mounting research suggests that these agents may impair the biocompatibility of the cements. However, incorporating an alternative radiopacifier agent with excellent biocompatibility would be a significant step forward. Bioactive radiopaque glasses incorporating elements such as strontium (Sr) and zinc (Zn), known to have beneficial and therapeutic effects on bone, are of great interest in this respect. In this study, the Ba2SO4 of the commercially available Spineplex® was incrementally replaced with a radiopaque therapeutic glass composition. The resulting effects on cement setting time, peak isotherm, ultimate compressive strength, Young’s modulus (up to 30 days cement maturation) and radiopacity were evaluated. The substitution lead to an increase in cement setting time from 13.1 mins for Spineplex® to 16.6–18.3 mins for the glass substituted cements. The peak exotherm during curing was reduced from 74°C for Spineplex® to a minimum of 51°C for the fully substituted cement, indicating that reduced thermal necrosis in the in vivo setting is likely with these materials. Ultimate compressive strength and Young’s modulus of each formulation showed no significant deterioration due to the substitution. Finally, the radiopacity of the substituted cements were reduced by up to a maximum of 18% in comparison to the control. However, the experimental formulations still maintained radiopacity equivalent to several millimetres of aluminium. As such the substituted cements had substantial equivalence to the Spineplex® control. In order to assess the clinical relevance of these findings further investigation is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weill A, Chiras J, Simon JM, Rose M, SolaMartinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996;199:241–47.

    PubMed  CAS  Google Scholar 

  2. Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, Deramond H. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. Am J Neuroradiol. 2001;22:373–81.

    PubMed  CAS  Google Scholar 

  3. Deramond H, Depriester C, Galibert P, Le Gars D. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am. 1998;36:533–46.

    Article  PubMed  CAS  Google Scholar 

  4. Garfin SR, Reilley MA. Minimally invasive treatment of osteoporotic vertebral body compression fractures. Spine J. 2002;2:76–80.

    Article  PubMed  Google Scholar 

  5. Soin A, Kapural L, Mekhail N. Imaging for percutaneous vertebral augmentation. Tech Reg Anesth Pain Manag. 2007;11:90–94.

    Article  Google Scholar 

  6. Carlier RY, Gordji H, Mompoint DM, Vernhet N, Feydy A, Vallee C. Osteoporotic vertebral collapse: percutaneous vertebroplasty and local kyphosis correction. Radiology. 2004;233:891–8.

    Article  PubMed  Google Scholar 

  7. Jasper LE, Deramond H, Mathis JM, Belkoff SM. Material properties of various cements for use with vertebroplasty. J Mater Sci: Mater Med. 2002;13:1–5.

    Article  CAS  Google Scholar 

  8. Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38:155–82.

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Breusch SJ, Kuhn KD. Bone cements based on polymethylmethacrylate. Orthopade. 2003;32:41–50.

    Article  PubMed  CAS  Google Scholar 

  10. Demian HW, McDermott K. Regulatory perspective on characterization and testing of orthopedic bone cements. Biomaterials. 1998;19:1607–18.

    Article  PubMed  CAS  Google Scholar 

  11. Wang JS, Diaz J, Sabokbar A, Athanasou N, Kjellson F, Tanner KE, et al. In vitro and in vivo biological responses to a novel radiopacifying agent for bone cement. J R Soc Interface. 2005;2:71–8.

    Article  PubMed  CAS  Google Scholar 

  12. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA. Radio-opaque agents in bone cement increase bone resorption. J Bone Joint Surg Br Vol. 1997;79B:129–34.

    Article  Google Scholar 

  13. Bhambri SK, Gilbertson LN. Micromechanisms of fatiguecrack initiation and propagation in bone cements. J Biomed Mater Res. 1995;29:233–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lewis G, Xu J, Madigan S, Towler MR. Influence of strontia on various properties of surgical Simplex P acrylic bone cement and experimental variants. Acta Biomater. 2007;3:970–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hernández L, Fernández M, Collía F, Gurruchaga M, Goñi I. Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent. Biomaterials. 2006;27:100–7.

    Article  PubMed  CAS  Google Scholar 

  16. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hench LL. Genetic design of bioactive glass.  Amsterdam: Elsevier Sci Ltd; 2009.

    Google Scholar 

  18. Shah PMM, Sidhu SK, Chong BS, Ford TRP. Radiopacity of resin-modified glass ionomer liners and bases. J Prosthet Dent. 1997;77:239–42.

    Article  PubMed  CAS  Google Scholar 

  19. Dabsie F, Gregoire G, Sixou M, Sharrock P. Does strontium play a role in the cariostatic activity of glass ionomer? Strontium diffusion and antibacterial activity. J Dent. 2009;37:554–9.

    Article  PubMed  CAS  Google Scholar 

  20. Glass-ionomer fluoride release to adjacent caries Dental Abstracts 2009; 54: 149.

  21. Erbe EM, Clineff TD, Gualtieri G. Comparison of a new bisphenol-a-glycidyl dimethacrylate-based cortical bone void filler with polymethyl methacrylate. Eur Spine J. 2001;10:S147–52.

    Article  PubMed  Google Scholar 

  22. Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook IM. Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses. J Mater Sci: Mater Med. 2009;20:413–20.

    Article  CAS  Google Scholar 

  23. Murphy S, Boyd D, Moane S, Bennett M. J Mater Sci: Mater Med 2009; in press.

  24. Jenni BJL, Popp R, Goldstein AS. JEffect of soluble zinc on differentiation of osteoprogenitor cells. Biomed Mater Res A. 2007;81A:766–9.

    Article  CAS  Google Scholar 

  25. Chen D, Waite L, Pierce W. In vitro effects of zinc on markers of bone formation. Biol Trace Elem Res. 1999;68:225–34.

    Article  PubMed  CAS  Google Scholar 

  26. Boyd D, Li H, DA T, Towler M, Wall J. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci: Mater Med. 2006;17:489–94.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu L-L, Zaidi S, Peng Y. Induction of a program of gene expression during osteoblast differentiation with strontium ranelate. Biochem Biophys Res Commun. 2007;355:307–11.

    Article  PubMed  CAS  Google Scholar 

  28. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42:129–38.

    Article  PubMed  CAS  Google Scholar 

  29. International Standard 5833:2002. Implants for surgery acrylic resin cements. Geneve, Switzerland: International Organization for Standardization.

  30. Chavali R, Resijek R, Knight SK, Choi IS. Extending polymerization time of polymethylmethacrylate cement in percutaneous vertebroplasty with ice bath cooling. Am J Neuroradiol. 2003;24:545–46.

    PubMed  Google Scholar 

  31. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state of the art review. J Biomed Mater Res B Appl Biomater. 2006;76B:456–468.

    Article  CAS  Google Scholar 

  32. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999;25:17S–21.

    Article  PubMed  CAS  Google Scholar 

  33. Kovacic J, Lieberman IH, Togawa D, Bauer TW, Brodke D, Reinhart MK. The behavior of polymethylmethacrylate during kyphoplasty and vertebroplasty in the primate spine—a gross and histologic analysis. Spine J. 2003;3:79.

    Article  Google Scholar 

  34. Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J. 2001;10:S205–13.

    Article  PubMed  Google Scholar 

  35. Lim TH, Brebach GT, Renner SM, Kim WJ, Kim JG, Lee RE, Andersson G. B. J, An HS. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty; 2002.

  36. Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P. Augmentation of mechanical properties in osteoporotic vertebral bones--a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J. 2001;10:164–71.

    Article  PubMed  CAS  Google Scholar 

  37. Belkoff SM, Mathis JM, Jasper LE, Deramond H. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine. 2001;26:1537–41.

    Article  PubMed  CAS  Google Scholar 

  38. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behaviour during percutaneous vertebroplasty. Spine. 2003;28:1549–4.

    Article  PubMed  Google Scholar 

  39. Belkoff SM, Mathis JM, Erbe EM, Fenton DC. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine. 2000;25:1061–64.

    Article  PubMed  CAS  Google Scholar 

  40. Higgins KB, Harten RD, Langrana NA, Reiter MF. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine. 2003;28:1540–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, D., Boyd, D., Madigan, S. et al. Evaluation of a novel radiopacifiying agent on the physical properties of surgical spineplex® . J Mater Sci: Mater Med 21, 53–58 (2010). https://doi.org/10.1007/s10856-009-3844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3844-8

Keywords

Navigation