Skip to main content
Log in

In vitro evaluation of the PEtU-PDMS material immunocompatibility: the influence of surface topography and PDMS content

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of the present work is to evaluate the in vitro immunocompatibility of an elastomeric material with feasible applications in the cardiovascular field. In particular, since it is well known that surface chemistry and topography play a key role in the foreign body response, their influence on human monocytes was evaluated. The material, constituted by a poly(ether)urethane (PEtU) and a polydimethylsiloxane (PDMS), was synthesized to manufacture films and small-diameter vascular grafts with three different surface topographical features, smooth, rough and porous, and siloxane rates, 10, 30 and 40. Human THP-1 monocytes have been cultured for 72 h on the films and human blood has been circulating for 2 h into the grafts to assess leukocyte adhesion and cytokine releases. Materials extracts were utilized to evaluate monocyte apoptosis. Smooth films showed lower cell adhesion degrees than rough and porous ones. All the PEtU-PDMS (poly(ether)urethane-polydimethylsiloxane) films and vascular grafts induced a narrow inflammatory response, as demonstrated by slight cytokine secretion levels, in particular samples with the highest PDMS contents (30 and 40%) induced the lowest IL-1β secretion. Moreover, an absence of monocyte apoptosis advises that the negligible release values have not to be ascribed to material toxicity. In the end, surface topography showed to affect only monocyte adhesion while siloxane content the cytokine release. Therefore, the possibility to modify the above tested parameters during material synthesis and manufacture could allow to bound the inflammatory potency of the PEtU-PDMS devices and render them excellent candidates for cardiovascular reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomsen P, Grezter C. Macrophage interactions with modified material surfaces. Curr Opin Solid State Mater Sci. 2001;5:163–76.

    Article  CAS  Google Scholar 

  2. Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine. 2002;18:311–9.

    Article  CAS  PubMed  Google Scholar 

  3. MacEwan MR, Brodbeckm WG, Matsuda T, Anderson JM. Monocyte/lymphocyte interactions and the foreign body response: in vitro effects of biomaterial surface chemistry. J Biomed Mater Res. 2005;74:285–93.

    Article  CAS  Google Scholar 

  4. Zhao Q, Topham NS, Anderson JM, Hiltner A, Lodoen G, Payet CR. Foreign body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res. 1991;25:177–83.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson JM, Jones JA. Leading Opinion: phenotypic dichotomies in the foreign body reaction. Biomaterials. 2007;28:5114–20.

    Article  CAS  PubMed  Google Scholar 

  6. Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A. 2004;70:194–205.

    Article  PubMed  CAS  Google Scholar 

  7. Briganti E, Losi P, Raffi A, Scoccianti M, Munaò A, Soldani G. Silicone based polyurethane materials: a promising biocompatible elastomeric formulation for cardiovascular applications. J Mater Sci: Mater Med. 2006;17:259–66.

    Article  CAS  Google Scholar 

  8. Spiller D, Losi P, Briganti E, Sbrana S, Kull S, Martinelli I, et al. PDMS content affects in vitro hemocompatibility of synthetic vascular grafts. J Mater Sci: Mater Med. 2007;18:1097–104.

    Article  CAS  Google Scholar 

  9. Okoshi T, Goddard M, Galletti PM, Soldani G. In vivo evaluation of porous versus skinned polyurethane-polydimethylsiloxane small diameter vascular grafts. ASAIO Trans. 1991;37:480–1.

    Google Scholar 

  10. Losi P, Lombardi S, Briganti E, Soldani G. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials. 2004;25:4447–55.

    Article  CAS  PubMed  Google Scholar 

  11. Okoshi T. New concept of microporous structure in small diameter vascular prostheses. Artif Organs. 1995;19:27–31.

    Article  CAS  PubMed  Google Scholar 

  12. Losi P, Munaò A, Spiller D, Briganti E, Martinelli I, Scoccianti M, et al. Evaluation of a new composite prosthesis for the repair of abdominal wall defects. J Mater Sci: Mater Med. 2007;18:1939–44.

    Article  CAS  Google Scholar 

  13. Soldani G, Losi P, Milioni C, Raffi A. Light microscopy evaluation of polyurethane vascular grafts porosity by Sudan Black B staining. J Microsc. 2002;206:139–45.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  14. Wataha JC, Ratanasathien S, Hanks CT, Sun Z. In vitro IL-1 beta and TNF-alpha release from THP-1 monocytes in response to metal ions. Dent Mater. 1996;12:322–7.

    Article  CAS  PubMed  Google Scholar 

  15. Michie J, Akudugu J, Binder A, Van Rensburg CE, Böhm L. Flow cytometric evaluation of apoptosis and cell viability as a criterion of anti-tumour drug toxicity. Anticancer Res. 2003;23:2675–9.

    CAS  PubMed  Google Scholar 

  16. Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A. 2007;83:585–96.

    PubMed  Google Scholar 

  17. Jones JA, McNally A, Chang D, Qin L, Meyerson H, Colton E, et al. Matrix metalloproteinases and their inhibitors in the foreign body reaction on biomaterials. J Biomed Mater Res. 2007;84:158–66.

    Google Scholar 

  18. Soldani G, Bernabei M, Losi P, Crucean A, Chiappino D, Burchielli S, et al. In vitro experiments and in vivo implants to evaluate a new silicone-based polyurethane material for replacement of small vessels. Cardiol Young. 2004;3:20–3.

    Google Scholar 

  19. Anderson JM. Biological responses to materials. Ann Rev Mater Res. 2001;31:81–110.

    Article  CAS  Google Scholar 

  20. Ziats NP, Miller KM, Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials. 1988;9:5–13.

    Article  CAS  PubMed  Google Scholar 

  21. Skoglund G, Cotgreave I, Rincon J, Patarroya M, Ingelman-Sundberg M. H2O2 activates Cd11b/CD18-dependent cell adhesion. Biochem Biophys Res Commun. 1988;157:443–9.

    Article  CAS  PubMed  Google Scholar 

  22. Busnach GB, Brando B, Cappelleri A, Sommaruga E, Brunati C, Minetti L. Polymorphonuclear cell phagocytosis and surface receptor modulation after extracorporeal circulation. ASAIO Trans. 1989;35:361–4.

    Article  CAS  PubMed  Google Scholar 

  23. Xua LC, Siedleckia CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28:3273–83.

    Article  CAS  Google Scholar 

  24. von Recum AF, van Kooten TG. The influence of micro-topography on cellular response and the implications for silicone implants. J Biomater Sci Polym Ed. 1995;7:181–98.

    Article  Google Scholar 

  25. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, et al. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA. 2002;99:10287–92.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Barbosa JN, Barbosa MA, Aguas AP. Adhesion of human leukocytes to biomaterials: an in vitro study using alkanethiolate monolayers with different chemically functionalized surfaces. J Biomed Mater Res A. 2003;65:429–34.

    Article  PubMed  CAS  Google Scholar 

  27. Young TH, Lin DT, Chen LY. Human monocyte adhesion and activation on crystalline polymers with different morphology and wettability in vitro. J Biomed Mater Res. 2000;50:490–8.

    Article  CAS  PubMed  Google Scholar 

  28. Van Bilsen PH, Krenningm G, Billy D, Duval JL, Huurdeman-Vincent J, van Luyn MJ. Heparin coating of poly(ethylene terephthalate) decreases hydrophobicity monocyte/leukocyte interaction and tissue interaction. Colloids Surf B Biointerfaces. 2008;67:46–53.

    Article  PubMed  CAS  Google Scholar 

  29. Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials. 2001;22:1987–96.

    Article  CAS  PubMed  Google Scholar 

  30. Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res. 2008;85A:157–66.

    Article  CAS  Google Scholar 

  31. Jones JA, Dadsetan M, Collier TO, Ebert M, Stokes KS, Ward RS, et al. Macrophage behavior on surface-modified polyurethanes. J Biomater Sci Polym Ed. 2004;15:567–84.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  CAS  PubMed  Google Scholar 

  33. Naim JO, Van Oss CJ, Ippolito KM, Zhang J, Jin L, Fortuna R, et al. In vitro activation of human monocytes by silicones. Colloids Surf B Biointerfaces. 1998;11:79–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Community for supporting this work through the SILCROTHANE Project, Contract N° G5RD-CT-2000-00220, and the Sant’Anna School of University Studies and Doctoral Research, Pisa, for providing a postgraduate students fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Spiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiller, D., Mirtelli, C., Losi, P. et al. In vitro evaluation of the PEtU-PDMS material immunocompatibility: the influence of surface topography and PDMS content. J Mater Sci: Mater Med 20, 2511–2520 (2009). https://doi.org/10.1007/s10856-009-3823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3823-0

Keywords

Navigation