Skip to main content
Log in

Fabrication and characterization of biodegradable nanofibrous mats by mix and coaxial electrospinning

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate an innovative tissue engineering scaffold with a controllable drug-releasing capability. The hypothesis is that the nanofibers fabricated by coaxial electrospinning could encapsulate and release sustainedly Tetracycline Hydrochloride (TCH). To testify the hypothesis, nanofibers were prepared by coaxial electrospinning from Poly(l-lactid-co-ε-caprolactone) [PLLACL]/2,2,2-Frifluoroethanol (TFE) solutions (as the shell solutions) and TCH/TFE solutions (as the core solutions). In addition, nanofibers of PLLACL-blend-TCH were also prepared as the control by mix electrospinning. The relationship between fibers morphologies and processed conditions in electrospinning were investigated. TCH release behaviors from the nanofibrous mats were studied. The antibacterial properties of aforementioned nanofibers were detected by the Escherichia coli growth-inhibiting tests. The results indicated that the nanofibers prepared by coaxial-electrospinning had the desired and controllable TCH encapsulation/release profile; thus, it could be utilized as both a drug encapsulation/release vehicle and a tissue engineering scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bajgai MP, Aryal S, Bhattarai SR, Bahadur KCR, Kim KW, Kim HY. Poly(epsilon-caprolactone) grafted dextran biodegradable electrospun matrix: a novel scaffold for tissue engineering. J Appl Polym Sci. 2008;108:1447–54. doi:10.1002/app.27825.

    Article  CAS  Google Scholar 

  2. Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol. 2006;6:2693–711. doi:10.1166/jnn.2006.485.

    Article  CAS  PubMed  Google Scholar 

  3. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci. 2004;9:1422–32. doi:10.2741/1313.

    Article  CAS  PubMed  Google Scholar 

  4. Chen ZG, Mo XM, Qing FL. Electrospinning of collagen–chitosan complex. Mater Lett. 2007;61:3490–4. doi:10.1016/j.matlet.2006.11.104.

    Article  CAS  Google Scholar 

  5. Lu H, Zhang T, Wang XP, Fang QF. Electrospun submicron bioactive glass fibers for bone tissue scaffold. J Mater Sci: Mater Med. 2009;20:793–8. doi:10.1007/s10856-008-3649-1.

    Article  CAS  Google Scholar 

  6. Meinel AJ, Kubow KE, Klotzsch E, Fuentes MG, Smith ML, Vogel V, et al. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials. 2009;30:3058–67. doi:10.1016/j.biomaterials.2009.01.054.

    Article  CAS  PubMed  Google Scholar 

  7. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9. doi:10.1016/j.biomaterials.2008.08.007.

    Article  CAS  PubMed  Google Scholar 

  8. Xu XL, Zhuang XL, Chen XS, Wang XR, Yang LX, Jing XB. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun. 2006;27:1637–42. doi:10.1002/marc.200600384.

    Article  CAS  Google Scholar 

  9. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release. 2002;81:57–64. doi:10.1016/S0168-3659(02)00041-X.

    Article  CAS  Google Scholar 

  10. You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stabil. 2005;90:441–8. doi:10.1016/j.polymdegradstab.2005.04.015.

    Article  CAS  Google Scholar 

  11. Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. J Biomater Sci Polym Ed. 2008;19:677–91. doi:10.1163/156856208784089661.

    Article  CAS  PubMed  Google Scholar 

  12. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8. doi:10.1021/bm015533u.

    Article  CAS  PubMed  Google Scholar 

  13. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176–84. doi:10.1016/j.biomaterials.2005.03.027.

    Article  CAS  PubMed  Google Scholar 

  14. Cui WG, Zhou SB, Li XH, Weng J. Drug-loaded biodegradable polymeric nanofibers prepared by electrospinning. Tissue Eng. 2006;12:1070. doi:10.1089/ten.2006.12.75.

    Article  Google Scholar 

  15. Chew SY, Wen J, Yim KF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules. 2005;6:2017–24. doi:10.1021/bm0501149.

    Article  CAS  PubMed  Google Scholar 

  16. Ashammakhi N, Ndreu A, Piras AM, Nikkola L, Sindelar T, Ylikauppila H. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol. 2007;7:862–82. doi:10.1166/jnn.2007.485.

    Article  CAS  PubMed  Google Scholar 

  17. He CL, Huang ZM, Han XJ, Liu L, Zhang HS, Chen LS. Coaxial electrospun poly(l-lactic acid) ultrafine fibers for sustained drug delivery. J Macromol Sci B. 2006;45:515–24. doi:10.1080/00222340600769832.

    Article  CAS  Google Scholar 

  18. Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ. Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release. 2005;108:33–42. doi:10.1016/j.jconrel.2005.07.021.

    Article  CAS  PubMed  Google Scholar 

  19. Qi HX, Hu P, Xu J, Wang AJ. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules. 2006;7:2327–30. doi:10.1021/bm060264z.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules. 2006;7:1049–57. doi:10.1021/bm050743i.

    Article  CAS  PubMed  Google Scholar 

  21. Melaiye A, Sun ZH, Hindi K, Milsted A, Ely D, Reneker DH. Silver(I)-imidazole cyclophane gem–diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc. 2005;127:2285–91. doi:10.1021/ja040226s.

    Article  CAS  PubMed  Google Scholar 

  22. Li XQ, Su Y, Chen R, He CL, Wang HS, Mo XM. Fabrication and properties of core-shell structure P(LLA-CL) nanofibers by coaxial electrospinning. J Appl Polym Sci. 2009;111:1564–70. doi:10.1002/app.29056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, National science foundation (30570503), National high technology research and developed program (863 Program, 2008AA03Z305), Science and technology commission of Shanghai municipality program (08520704600, and 0852 nm03400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumei Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Li, X., Wang, H. et al. Fabrication and characterization of biodegradable nanofibrous mats by mix and coaxial electrospinning. J Mater Sci: Mater Med 20, 2285–2294 (2009). https://doi.org/10.1007/s10856-009-3805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3805-2

Keywords

Navigation