Skip to main content

Advertisement

Log in

Effect of wear on stress distributions and potential fracture in teeth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Finite element analysis is conducted on a tooth model with different degrees of wear. The model is taken as a hemispherical shell (enamel) on a compliant interior (dentin). Occlusal loading is simulated by contact with a flat or curved, hard or soft, indenter. Stress redistributions indicate that development of a wear facet may enhance some near-contact fracture modes (cone–ring cracks, radial–median cracks, edge-chipping), but have little effect on far-field modes (margin cracks). Contacts on worn surfaces with small, hard food objects are likely to be most deleterious, generating local stress concentrations and thereby accelerating the wear process. More typical contacts with larger-scale soft foods are unlikely to have such adverse effects. Implications concerning dietary habits of animals is an adjunct consideration in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Osborn JW. In: Osborn JW, editor. Dental anatomy and embryology, Vol. 1. Oxford: Blackwell; 1981.

  2. Maas MC, Dumont ER. Built to last: the structure, function, and evolution of primate dental enamel. Evol Anthrop. 1999;8:133–52.

    Article  Google Scholar 

  3. Lucas PW. Dental functional morphology: how teeth work. Cambridge, UK: Cambridge University Press; 2004.

    Google Scholar 

  4. Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res. 1998;77:472–80.

    Article  CAS  PubMed  Google Scholar 

  5. Lucas PW, Constantino PJ, Wood BA, Lawn BR. Dental enamel as a dietary indicator in mammals. BioEssays. 2008;30:374–85.

    Article  PubMed  Google Scholar 

  6. Lawn BR, Lee JJ-W, Constantino PJ, Lucas PW. Predicting failure in mammalian enamel. J Mech Behav Biomed Mat. 2009;2:33–42.

    Article  Google Scholar 

  7. Lawn BR, Lee JJ-W. Analysis of fracture and deformation modes in teeth subjected to occlusal loading. Acta Biomater. 2009;5:2213–21.

    Article  PubMed  Google Scholar 

  8. Teaford MF, Ungar PS. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci. 2000;97:13506–11.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Janis CM, Fortelius M. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol Rev Cambridge Philos Soc. 1988;63:197–230.

    Article  CAS  PubMed  Google Scholar 

  10. Lawn BR, Deng Y, Thompson VP. Use of contact testing in the characterization and design of all-ceramic crown-like layer structures: a review. J Prosthet Dent. 2001;86:495–510.

    Article  CAS  PubMed  Google Scholar 

  11. Lawn BR, Bhowmick S, Bush MB, Qasim T, Rekow ED, Zhang Y. Failure modes in ceramics-based layer structures: a basis for materials design of dental crowns. J Am Ceram Soc. 2007;90:1671–83.

    Article  CAS  Google Scholar 

  12. Lee JJ-W, Kwon J-Y, Chai H, Lucas PW, Thompson VP, Lawn BR. Fracture modes in human teeth. J Dent Res. 2009;88:224–8.

    PubMed  Google Scholar 

  13. Qasim T, Bush MB, Hu X, Lawn BR. Contact damage in brittle coating layers: influence of surface curvature. J Biomed Mater Res. 2005;73B:179.

    Article  CAS  Google Scholar 

  14. Qasim T, Ford C, Bush MB, Hu X, Malament KA, Lawn BR. Margin failures in brittle dome structures: relevance to failure of dental crowns. J Biomed Mater Res. 2007;80B:78–85.

    Article  CAS  Google Scholar 

  15. Kim J-W, Bhowmick S, Chai H, Lawn BR. Role of substrate material in failure of crown-like layer structures. J Biomed Mater Res. 2007;81B:305–11.

    Article  CAS  Google Scholar 

  16. Popowics TE, Rensberger JM, Herring SW. The fracture behavior of human and pig molar cusps. Arch Oral Biol. 2001;46:1–12.

    Article  CAS  PubMed  Google Scholar 

  17. Chai H, Lawn BR, Wuttiphan S. Fracture modes in brittle coatings with large interlayer modulus mismatch. J Mater Res. 1999;14:3805–17.

    Article  CAS  ADS  Google Scholar 

  18. Chai H, Lawn BR. A universal relation for edge chipping from sharp contacts in brittle materials and its use as a simple means of toughness evaluation. Acta Mater. 2007;55:2555–61.

    Article  CAS  Google Scholar 

  19. Qasim T, Bush MB, Hu X-Z. The influence of complex surface geometry on contact damage in curved brittle coatings. Int J Mech Sci. 2006;48:244–8.

    Article  Google Scholar 

  20. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of molar enamel. Arch Oral Biol. 2002;47:281–91.

    Article  CAS  PubMed  Google Scholar 

  21. Chai H, Lee JJ-W, Constantino PJ, Lucas PW, Lawn BR. Remarkable resilience of teeth. Proc Natl Acad Sci. 2009;106:7289–93.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Ford C, Bush MB, Hu XZ. A numerical study of contact damage in curved porcelain/glass-filled polymer bilayers. Compos Sci Technol. 2004;64:2207–12.

    Article  CAS  Google Scholar 

  23. Qasim T, Ford C, Bush MB, Hu X, Lawn BR. Effect of off-axis concentrated loading on failure of curved brittle layer structures. J Biomed Mater Res. 2006;76B:334.

    Article  CAS  Google Scholar 

  24. Quinn JB, Su L, Flanders L, Lloyd IK. Edge toughness and material properties related to the machining of dental ceramics. Mach Sci Tech. 2000;4:291–304.

    Article  CAS  Google Scholar 

  25. Chai H, Lawn BR. Edge chipping of brittle materials: effect of side-wall inclination and loading angle. Int J Fract. 2007;145:159–65.

    Article  CAS  Google Scholar 

  26. Spears IR. A three-dimensional finite element model of prismatic enamel: a reappraisal of the data on the Young’s modulus of enamel. J Dent Res. 1997;76:1690–97.

    Article  CAS  PubMed  Google Scholar 

  27. Sognnaes RF. The organic elements of enamel. II. The organic framework of the internal part of the enamel, with special regard to the organic basis for the so-called tufts and Schreger bands. J Dent Res. 1949;28:549–57.

    CAS  PubMed  Google Scholar 

  28. Osborn JW. The 3-dimensional morphology of the tufts in human enamel. Acta Anat. 1969;73:481–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Lawn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, C., Bush, M.B. & Lawn, B. Effect of wear on stress distributions and potential fracture in teeth. J Mater Sci: Mater Med 20, 2243–2247 (2009). https://doi.org/10.1007/s10856-009-3802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3802-5

Keywords

Navigation