Skip to main content

Advertisement

Log in

Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It is well known that interstitials affect the mechanical properties of titanium and titanium alloys. Their effects on the fatigue properties of titanium foams have not, however, been documented in the literature. This paper presents the effect of the oxygen content on the static and dynamic compression properties of titanium foams. Increasing the oxygen content from 0.24 to 0.51 wt% O in solution significantly increases the yield strength and reduces the ductility of the foams. However, the fatigue limit is not significantly affected by the oxygen content and falls within the 92 MPa ± 12 MPa range for all specimens investigated in this study. During cyclic loading, deformation is initially coming from cumulative creep followed by the formation of microcracks. The coalescence of these microcracks is responsible for the rupture of the specimens. Fracture surfaces of the specimens having lower oxygen content show a more ductile aspect than the specimens having higher oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cameron HU, Pilliar RM, McNab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res. 1973;7(4):301–11.

    Article  CAS  PubMed  Google Scholar 

  2. Bobyn JD, Pilliar RM, Cameron HU. The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;150:263–70.

    PubMed  Google Scholar 

  3. Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci. 1981;26:123–403.

    Article  CAS  Google Scholar 

  4. Murray JL, Wriedt HA. The O–Ti (oxygen–titanium) system. Bull Alloy Phase Diagrams. 1987;8:148–65.

    Article  CAS  Google Scholar 

  5. Ottaviani G, Nava F, Quierolo G, Iannuzzi G, De Santi G, Tu KN. Low temperature oxygen dissolution in titanium. Thin Solid Films. 1987;146:201–7.

    Article  CAS  ADS  Google Scholar 

  6. Wasz ML, Brotzen FR, McLellan RB, Griffin AJ Jr. Effect of oxygen and hydrogen on mechanical properties of commercially purity titanium. Int Mater Rev. 1996;41(1):1–12.

    CAS  Google Scholar 

  7. ASTM standard F 67-00, Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700).

  8. ASTM standard F 1341-99, Standard Specification for Unalloyed Titanium Wire UNS R50250, UNS R50400, UNS R50550, UNS R50700).

  9. ASTM standard F 1108-97a, Standard Specification for Titanium and Titanium-6 Aluminum-4 Vanadium Alloy Casting for Surgical Implants (UNS R56406).

  10. ASTM standard F 136-98, Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy (UNS R56401) for Surgical Implant Applications.

  11. ASTM standard F 1472-02a, Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium Alloy for Surgical Implant Applications (UNS R56400).

  12. ASTM standard F 1580-01, Standard Specification for Titanium and Titanium-6 Aluminum-4 Vanadium Alloy Powders for Coatings of Surgical Implants.

  13. Yue S, Pilliar RM, Weatherly GC. The fatigue strength of porous-coated Ti-6Al-4V implant alloy. J Biomed Mater Res. 1984;18:1043–58.

    Article  CAS  PubMed  Google Scholar 

  14. Cook SD, Georgette FS, Skinner HB, Haddad RJ Jr. Fatigue properties of carbon- and porous-coated Ti–6Al–4V alloy. J Biomed Mater Res. 1984;18(5):497–512.

    Article  CAS  PubMed  Google Scholar 

  15. Fragomeni JM. Effect of heat treating on the microstructure and fatigue behavior of a Ti-6wt.%Al-4wt.%V ELI alloy. J Adv Mater. 2001;33(3):18–25.

    CAS  Google Scholar 

  16. Arciniegas M, Aparicio C, Manero JM, Gil FJ. Low elastic modulus metals for joint prosthesis: tantalum and nickel-titanium foams. J Eur Ceram Soc. 2007;27(11):3391–8.

    Article  CAS  Google Scholar 

  17. Sevilla P, Aparicio C, Planell JA, Gil FJ. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloy Comp. 2007;439(1–2):67–73.

    Article  CAS  Google Scholar 

  18. Barrabés M, Sevilla P, Planell JA, Gil FJ. Mechanical properties of nickel-titanium foams for reconstructive orthopaedics. Mater Sci Eng C. 2008;28(1):23–7.

    Article  Google Scholar 

  19. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res. 2001; 58(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lefebvre LP, Thomas Y. Method of Making Open Cell Material, US patent 6,660,224 B2, Dec. 9, 2003.

  21. Lefebvre LP, Baril E. Effect of oxygen concentration and distribution of the compression properties of titanium foams. Adv Eng Mat. 2008;10(9):868–76.

    Article  CAS  Google Scholar 

  22. Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG. Metal Foams. A design Guide. Cambridge: Butterworth Heinemann; 2000.

    Google Scholar 

  23. Lütjering G, Williams JC. Titanium. 2nd ed. Springer: Pirna; 2007. p. 188.

    Google Scholar 

  24. Zioupos P, Gresle M, Winwood K. Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects. J Biomed Mat Res A. 2008;86A(3):627–36.

    Article  CAS  Google Scholar 

  25. Choi K, Goldstein SA. A comparison of the fatigue behaviour of human trabecular and cortical bone tissue. J Biomech. 1992;25:1371–81.

    Article  CAS  PubMed  Google Scholar 

  26. Carter DR, Hayes WC. Compact bone fatigue damage. I. Residual strength and stiffness. J Biomech. 1977;10:325–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge J.-P. Nadeau, S. Mercier, M. Plourde, D. Simard, F. Borgis and Dr. S. Lang for their contributions in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Lefebvre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre, L.P., Baril, E. & Bureau, M.N. Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams. J Mater Sci: Mater Med 20, 2223–2233 (2009). https://doi.org/10.1007/s10856-009-3798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3798-x

Keywords

Navigation