Skip to main content

Advertisement

Log in

Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This research work aims to propose highly porous polymer/bioactive glass composites as potential scaffolds for hard-tissue and soft-tissue engineering. The scaffolds were prepared by impregnating an open-cells polyurethane sponge with melt-derived particles of a bioactive glass belonging to the SiO2–P2O5–CaO–MgO–Na2O–K2O system (CEL2). Both the starting materials and the composite scaffolds were investigated from a morphological and structural viewpoint by X-ray diffraction analysis and scanning electron microscopy. Tensile mechanical tests, carried out according to international ISO and ASTM standards, were performed by using properly tailored specimens. In vitro tests by soaking the scaffolds in simulated body fluid (SBF) were also carried out to assess the bioactivity of the porous composites. It was found that the composite scaffolds were highly bioactive as after 7 days of soaking in SBF a HA layer grew on their surface. The obtained polyurethane/CEL2 composite scaffolds are promising candidates for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schlickewei W, Schlickewei S. The use of bone substitutes in the treatment of bone defects—the clinical view and history. Macromol Symp. 2007;253:10–23. doi:10.1002/masy.200750702.

    Article  CAS  Google Scholar 

  2. Wu L, Ding J. In vitro degradation of three-dimensional porous poly(D,L -lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2004;25:5821–30. doi:10.1016/j.biomaterials.2004.01.038.

    Article  CAS  PubMed  Google Scholar 

  3. Lin ASP, Barrows TH, Cartmell SH, Guldberg RE. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials. 2003;24:481–9. doi:10.1016/S0142-9612(02)00361-7.

    Article  CAS  PubMed  Google Scholar 

  4. Wolff D, Goldberg VM, Stevenson S. Histomorphometric analysis of the repair of a segmental diaphyseal defect with ceramic and titanium fibermetal implants: effects of bone marrow. J Orthop Res. 1994;12:439–46. doi:10.1002/jor.1100120317.

    Article  CAS  PubMed  Google Scholar 

  5. Kon E, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328–37. doi:10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  6. Fredericks DC, et al. Segmental bone defect repair using sintered, porous ceramics. Key Eng Mater. 2002;218–220:409–12. doi:10.4028/www.scientific.net/KEM.218-220.409.

    Article  Google Scholar 

  7. Wilson CE, et al. A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments. Biomaterials. 2002;27:302–14. doi:10.1016/j.biomaterials.2005.06.041.

    Article  Google Scholar 

  8. Marcacci M, et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007;13:947–55. doi:10.1089/ten.2006.0271.

    Article  CAS  PubMed  Google Scholar 

  9. Ozawa N, Negami S, Odaka T, Morii T, Koshino T. Histological observations on tissue reaction of the rat calcaneal tendon to sintered hydroxyapatite. J Mater Sci Lett. 1989;8:869–71. doi:10.1007/BF01729929.

    Article  CAS  Google Scholar 

  10. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88. doi:10.1016/0267-6605(93)90049-D.

    Article  CAS  PubMed  Google Scholar 

  11. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci: Mater Med. 2003;14:201–9. doi:10.1023/A:1022872421333.

    Article  CAS  Google Scholar 

  12. Hench LL. Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res. 1998;41:511–8. doi:10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  13. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23. doi:10.1016/S0142-9612(98)00133-1.

    Article  CAS  PubMed  Google Scholar 

  14. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73. doi:10.1016/j.biomaterials.2005.07.017.

    Article  CAS  PubMed  Google Scholar 

  15. Knowles JC. Phosphate based glasses for biomedical applications. J Mater Chem. 2003;13:2395–401. doi:10.1039/b307119g.

    Article  CAS  Google Scholar 

  16. Abou EA, Knowles JC. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci: Mater Med. 2008;19:377–86. doi:10.1007/s10856-007-3079-5.

    Article  Google Scholar 

  17. Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. J Biomed Mater Res A. 2004;69:728–37.

    Article  PubMed  Google Scholar 

  18. Zhang RY, Ma PX. Poly(-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55. doi:10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F.

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  19. Stamboulis AG, Hench LL, Boccaccini AR. Mechanical properties of biodegradable polymer sutures coated with bioactive glass. J Mater Sci: Mater Med. 2002;4:843–8. doi:10.1023/A:1016544211478.

    Article  Google Scholar 

  20. Bretcanu O, Chen Q, Misra SK, Boccaccini AR, Roy I, Verné E, Vitale-Brovarone C. Biodegradable polymer coated 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Glass Technol Eur J Glass Sci Technol A. 2007;48:227–34.

    CAS  Google Scholar 

  21. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR. PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials. 2004;25:3013–21. doi:10.1016/j.biomaterials.2003.09.081.

    Article  CAS  PubMed  Google Scholar 

  22. Hench LL. The story of Bioglass®. J Mater Sci: Mater Med. 2006;17:967–78. doi:10.1007/s10856-006-0432-z.

    Article  CAS  Google Scholar 

  23. ASTM D638-08. Standard test method for tensile properties of plastics.

  24. ISO 527-1:1993 standard. Plastics—determination of tensile properties.

  25. ASTM F2150-07. Standard guide for characterization and testing of biomaterial scaffolds used in tissue-engineered medical products.

  26. Zhang K, Wang Y, Hillmayer MA, Francis LF. Processing and properties of porous poly( -lactide)/bioactive glass composites. Biomaterials. 2004;25:2489–500. doi:10.1016/j.biomaterials.2003.09.033.

    Article  CAS  PubMed  Google Scholar 

  27. Vitale-Brovarone C, Verné E, Robiglio L, Martinasso G, Canuto RA, Muzio G. Biocompatible glass–ceramic materials for bone substitution. J Mater Sci: Mater Med. 2008;19:471–8. doi:10.1007/s10856-006-0111-0.

    Article  CAS  Google Scholar 

  28. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. doi:10.1016/j.biomaterials.2005.02.002.

    Article  CAS  PubMed  Google Scholar 

  29. Kenesei P, Kadar Cs, Rajkovits Zs. The influence of cell-size distribution on the plastic deformation in metal foams. J Lendvai Scr Mater. 2004;50:295–300. doi:10.1016/j.scriptamat.2003.09.046.

    Article  CAS  Google Scholar 

  30. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15. doi:10.1016/j.biomaterials.2006.01.017.

    Article  CAS  PubMed  Google Scholar 

  31. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31. doi:10.1016/j.biomaterials.2006.01.039.

    Article  CAS  PubMed  Google Scholar 

  32. Jones J, Hench LL. Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci. 2003;7:301–7. doi:10.1016/j.cossms.2003.09.012.

    Article  CAS  Google Scholar 

  33. Bil M, Ryszkowska J, Roether JA, Bretcanu O, Boccaccini AR. Bioactivity of polyurethane-based scaffolds coated with Bioglass®. Biomed Mater. 2007;2:93–101. doi:10.1088/1748-6041/2/2/006.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Ciardelli G, et al. Bioactive polyurethanes in clinical applications. Polym Adv Technol. 2006;17:786–9. doi:10.1002/pat.781.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Regione Piemonte (Ricerca Sanitaria Finalizzata) supplied for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Baino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baino, F., Verné, E. & Vitale-Brovarone, C. Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. J Mater Sci: Mater Med 20, 2189–2195 (2009). https://doi.org/10.1007/s10856-009-3787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3787-0

Keywords

Navigation