Skip to main content
Log in

In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of the present work is to investigate the effect of PEG content in copolymer on physicochemical properties, in vitro macrophage uptake, in vivo pharmacokinetics and biodistribution of poly(lactic acid) (PLA)–poly(ethylene glycol) (PEG) hemoglobin (Hb)-loaded nanoparticles (HbP) used as blood substitutes. The HbP were prepared from PLA and PLA–PEG copolymer of varying PEG contents (5, 10, and 20 wt%) by a modified w/o/w method and characterized with regard to their morphology, size, surface charge, drug loading, surface hydrophilicity, and PEG coating efficiency. The in vitro macrophage uptake, in vivo pharmacokinetics, and biodistribution following intravenous administration in mice of HbP labeled with 6-coumarin, were evaluated. The HbP prepared were all in the range of 100–200 nm with highest encapsulation efficiency 87.89%, surface charge −10 to −33 mV, static contact angle from 54.25° to 68.27°, and PEG coating efficiency higher than 80%. Compared with PLA HbP, PEGylation could notably avoid the macrophage uptake of HbP, in particular when the PEG content was 10 wt%, a minimum uptake (6.76%) was achieved after 1 h cultivation. In vivo, besides plasma, the major cumulative organ was the liver. All PLA–PEG HbP exhibited dramatically prolonged blood circulation and reduced liver accumulation, compared with the corresponding PLA HbP. The PEG content in copolymer affected significantly the survival time in blood. Optimum PEG coating (10 wt%) appeared to exist leading to the most prolonged blood circulation of PLA–PEG HbP, with a half-life of 34.3 h, much longer than that obtained by others (24.2 h). These results demonstrated that PEG 10 wt% modified PLA HbP with suitable size, surface charge, and surface hydrophilicity, has a promising potential as long-circulating oxygen carriers with desirable biocompatibility and biofunctionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Winslow RM. Blood substitutes. Adv Drug Deliv Rev. 2000;40:131–42. doi:10.1016/S0169-409X(99)00045-9.

    Article  PubMed  CAS  Google Scholar 

  2. Greenburg AG, Kim HW. Civilian uses of hemoglobin-based oxygen carriers. Artif Organs. 2004;28:795–9. doi:10.1111/j.1525-1594.2004.07340.x.

    Article  PubMed  CAS  Google Scholar 

  3. Ferguson E, Leaviss J, Townsend E, Fleming P, Lowe KC. Perceived safety of donor blood and blood substitutes: the role of informational frame, patient groups and stress appraisals. Transfus Med. 2005;15:401–12. doi:10.1111/j.1365-3148.2005.00612.x.

    Article  PubMed  CAS  Google Scholar 

  4. Chang TMS. Semipermeable microcapsules. Science. 1964;146:524–5. doi:10.1126/science.146.3643.524.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Arifin DR, Palmer AF. Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Biomacromolecules. 2005;6:2172–81. doi:10.1021/bm0501454.

    Article  PubMed  CAS  Google Scholar 

  6. Chang TMS. Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discov. 2005;4:221–35. doi:10.1038/nrd1659.

    Article  PubMed  CAS  Google Scholar 

  7. Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials. 2001;22:2857–65. doi:10.1016/S0142-9612(01)00030-8.

    Article  PubMed  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC. Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carrier Syst. 2001;18(6):527–50.

    PubMed  CAS  Google Scholar 

  9. Pratten MK, Lioyd JB. Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta. 1986;881:307–13.

    PubMed  CAS  Google Scholar 

  10. Moghimi SM, Patel HM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system: the concept of tissue specificity. Adv Drug Deliv Rev. 1998;32:45–60. doi:10.1016/S0169-409X(97)00131-2.

    Article  PubMed  CAS  Google Scholar 

  11. Blunk T, Hochstrasser DF, Sanchez JC, Muller BW, Muller RH. Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1993;14:1382–7. doi:10.1002/elps.11501401214.

    Article  PubMed  CAS  Google Scholar 

  12. Mosqueira VCF, Legrand P, Gref R, Heurtault B, Appel M, Barratt G. Interactions between a macrophage cell line (J774A1) and surface-modified poly (d, l-lactide) nanocapsules bearing poly(ethylene glycol). J Drug Target. 1999;7(1):65–78.

    Article  PubMed  CAS  Google Scholar 

  13. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–27. doi:10.1016/S1359-0286(02)00117-1.

    Article  CAS  Google Scholar 

  14. Thiele L, Diederichs JE, Reszka R, Merkle HP, Walter E. Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials. 2003;24:1409–18. doi:10.1016/S0142-9612(02)00525-2.

    Article  PubMed  CAS  Google Scholar 

  15. Yu WP, Chang TMS. Submicron polymer membrane hemoglobin nanocapsules as potential blood substitutes: preparation and characterization. Artif Cells Blood Substit Immobil Biotechnol. 1994;24(3):169. doi:10.3109/10731199609117433.

    Article  Google Scholar 

  16. Yu WP, Chang TMS. Submicron biodegradable polymer membrane hemoglobin nanocapsules as potential blood substitutes: a preliminary report. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):889–93. doi:10.3109/10731199409117926.

    Article  PubMed  CAS  Google Scholar 

  17. Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26(9):1053–61. doi:10.1016/j.biomaterials.2004.04.008.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  18. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16:215–33. doi:10.1016/0169-409X(95)00026-4.

    Article  CAS  Google Scholar 

  19. Moghimi SM. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochim Biophys Acta. 2002;1590:131–9. doi:10.1016/S0167-4889(02)00204-5.

    Article  PubMed  CAS  Google Scholar 

  20. Papisov MI. Theoretical considerations of RES-avoiding liposomes: molecular mechanics and chemistry of liposome interactions. Adv Drug Deliv Rev. 1998;32:119–38. doi:10.1016/S0169-409X(97)00135-X.

    Article  PubMed  CAS  Google Scholar 

  21. Zahr AS, Davis CA, Pishko MV. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir. 2006;22:8178–85. doi:10.1021/la060951b.

    Article  PubMed  CAS  Google Scholar 

  22. Chang TMS. Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines, and other biologicals. J Bioeng. 1976;1:25–32.

    PubMed  CAS  Google Scholar 

  23. Chang TMS, Yu WP. US Patent 5670173, 23 Sept 1997.

  24. Chang TMS, Powanda D, Yu WP. Analysis of polyethylene-glycol-polylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation. Artif Cells Blood Substit Immobil Biotechnol. 2003;31(3):231–47. doi:10.1081/BIO-120023155.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao J, Liu CS, Yuan Y, Tao XY, Shan XQ, Sheng Y, et al. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers. Biomaterials. 2007;28:1414–22. doi:10.1016/j.biomaterials.2006.10.012.

    Article  PubMed  CAS  Google Scholar 

  26. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18:301. doi:10.1016/S0927-7765(99)00156-3.

    Article  PubMed  CAS  Google Scholar 

  27. Cao SS, Liu BL, Deng XB, Luo R, Chen HL. A novel approach for the preparation of acrylate–siloxane particles with core-shell structure. Polym Int. 2007;56:357–63. doi:10.1002/pi.2149.

    Article  CAS  Google Scholar 

  28. Hrkach JS, Peracchia MT, Domb A, Lotan N, Langer R. Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy. Biomaterials. 1997;18:27–30. doi:10.1016/S0142-9612(96)00077-4.

    Article  PubMed  CAS  Google Scholar 

  29. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22. doi:10.1016/j.biomaterials.2004.07.050.

    Article  PubMed  CAS  Google Scholar 

  30. Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d, l-lactide-co-glycolide) nanoparticles. Int J Pharm. 2003;262:1–11. doi:10.1016/S0378-5173(03)00295-3.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang XL, Liu CS, Yuan Y, Zhang SY, Shan XQ, Sheng Y, et al. Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes. J Mater Sci Mater Med. 2008;19:2463–70. doi:10.1007/s10856-007-3358-1.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang XL, Liu CS, Yuan Y, Shan XQ, Sheng Y, Xu F. Reduction and suppression of methemoglobin loaded in the polymeric nanoparticles intended for blood substitutes. J Biomed Mater Res B Appl Biomater. 2008;87B:354. doi:10.1002/jbm.b.31110.

    Article  CAS  Google Scholar 

  33. Zambaux MF, Faivre-Fiorina B, Bonneaux F, Marchal S, Merlin JL, Dellacherie E, et al. Involvement of neutrophilic granulocytes in the uptake of biodegradable non-stealth and stealth nanoparticles in guinea pig. Biomaterials. 2000;21:975–80. doi:10.1016/S0142-9612(99)00233-1.

    Article  PubMed  CAS  Google Scholar 

  34. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Livaniou E, Evangelatos G, et al. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. Int J Pharm. 2003;259:115–27. doi:10.1016/S0378-5173(03)00224-2.

    Article  PubMed  CAS  Google Scholar 

  35. Stolnik S, Dunn SE, Garnett MC, Davies MC, Coombes AGA, Taylor DC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res. 1994;11:1800. doi:10.1023/A:1018931820564.

    Article  PubMed  CAS  Google Scholar 

  36. Owens DEIII, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102. doi:10.1016/j.ijpharm.2005.10.010.

    Article  PubMed  CAS  Google Scholar 

  37. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17:31–48. doi:10.1016/0169-409X(95)00039-A.

    Article  CAS  Google Scholar 

  38. Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60:121–8. doi:10.1016/S0168-3659(99)00063-2.

    Article  PubMed  CAS  Google Scholar 

  39. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me PEG–PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84:493–8. doi:10.1002/jps.2600840420.

    Article  PubMed  CAS  Google Scholar 

  40. Opanasopit P, Nishikawa M, Hashida M. Factors affecting drug and gene delivery: effects of interaction with blood components. Crit Rev Ther Drug Carrier Syst. 2002;19:191–233. doi:10.1615/CritRevTherDrugCarrierSyst.v19.i3.10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National High Technology Research and Development Program of China (863 program) (No. 2004AA-302050) and from Shanghai Nanotechnology Special Foundation (No. 0452nm022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Y., Yuan, Y., Liu, C. et al. In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci: Mater Med 20, 1881–1891 (2009). https://doi.org/10.1007/s10856-009-3746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3746-9

Keywords

Navigation