Skip to main content

Advertisement

Log in

Comparison of failure mechanisms for cements used in skeletal luting applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr–Ca–Zn–SiO2) glasses and low molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable compressive strength (65 MPa) and flexural strength (14 MPa) for orthopaedic luting applications. In this study, two such GPC formulations, alongside two commercial cements (Simplex® P and Hydroset™) were examined. Fracture toughness and tensile bond strength to sintered hydroxyapatite and a biomedical titanium alloy were examined. Fracture toughness of the commercial Poly(methyl methacrylate) cement, Simplex® P, (3.02 MPa m1/2) was superior to that of the novel GPC (0.36 MPa m1/2) and the commercial calcium phosphate cement, Hydroset™, for which no significant fracture toughness was obtained. However, tensile bond strengths of the novel GPCs (0.38 MPa), after a prolonged period (30 days), were observed to be superior to commercial controls (Simplex™ P: 0.07 MPa, Hydroset™: 0.16 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res B Appl Biomater. 2006;76B(2):456–68. doi:10.1002/jbm.b.30398.

    Article  CAS  Google Scholar 

  2. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999;25(2, Supplement 1):17S–21S. doi:10.1016/S8756-3282(99)00127-1.

    Article  PubMed  CAS  Google Scholar 

  3. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6, Supplement 1):S305–16. doi:10.1016/j.spinee.2005.02.020.

    Article  Google Scholar 

  4. Baroud G, Falk R, Crookshank M, Sponagel S, Steffen T. Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration. J Biomech. 2004;37(2):189–96. doi:10.1016/S0021-9290(03)00246-X.

    Article  PubMed  CAS  Google Scholar 

  5. Perey O. Resistance and compression of the lumbar vertebrae. Encyclopedia of Medical Radiology. New York: Springer-Verlag; 1974.

    Google Scholar 

  6. Nachemson A. The load on lumbar discs in different positions of the body. Clin Orthop Relat Res. 1966;45:107. doi:10.1097/00003086-196600450-00014.

    Article  PubMed  CAS  Google Scholar 

  7. Bell GH, Dunbar O, Beck JS, Gibt A. Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Int. 1996;1(1):75–86.

    Google Scholar 

  8. White AA, Panjabi MM. Clinical biomechanics of the spine. Second ed. Philadelphia: J.B. Lippincott Company; 1990.

    Google Scholar 

  9. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol. 2006;27(1):217–23.

    PubMed  CAS  Google Scholar 

  10. Turner TM, Urban RM, Singh K, Hall DJ, Renner SM, Lim TH, et al. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Spine J. 2008;8(3):482–7.

    Google Scholar 

  11. Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone. 2007;40(4):1110–9. doi:10.1016/j.bone.2006.11.021.

    Article  PubMed  CAS  Google Scholar 

  12. Kim CW, Minocha J, Wahl CE, Garfin SR. Response of fractured osteoporotic bone to polymethylmethacrylate after vertebroplasty: case report. Spine J. 2004;4(6):709–12. doi:10.1016/j.spinee.2004.05.002.

    Article  PubMed  Google Scholar 

  13. Damir BM, Paul NM. Biomechanical analysis of hydroxyapatite cement cranioplasty. J Craniofac Surg. 2004;15(3):415–22. discussion 422.

    Article  Google Scholar 

  14. Dunne NJ, Orr JF. Thermal characteristics of curing acrylic bone cement. ITBM-RBM. 2001;22(2):88–97. doi:10.1016/S1297-9562(01)90034-8.

    Article  Google Scholar 

  15. Donkerwolcke M, Burny F, Muster D. Tissues and bone adhesives—historical aspects. Biomaterials. 1998;19(16):1461–6. doi:10.1016/S0142-9612(98)00059-3.

    Article  PubMed  CAS  Google Scholar 

  16. Kriegel RJ, Schaller C, Clusmann H. Cranioplasty for large skull defects with PMMA (Polymethylmethacrylate) or Tutoplast processed autogenic bone grafts. Zentralbl Neurochir. 2007;68(4):182–9. doi:10.1055/s-2007-985857.

    Article  PubMed  CAS  Google Scholar 

  17. Nussbaum DA, Gailloud P, Murphy K. A review of complications associated with vertebroplasty as reported to the food and drug administration medical device related web site. J Vasc Interv Radiol. 2004;15:1185–92.

    PubMed  Google Scholar 

  18. Friedman CD, Costantino PD, Takagi S, Chow LC. Bone source hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res. 1998;43:428–38. doi:10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0.

    Article  PubMed  CAS  Google Scholar 

  19. Larsson S, Bauer TW. Use of injectable calcium phosphate cement for fracture fixation: a review. Clin Orthop Relat Res. 2002;395:23–32. doi:10.1097/00003086-200202000-00004.

    Article  PubMed  Google Scholar 

  20. Tsai C-H, Lin R-M, Ju C-P, Chern Lin J-H. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials. 2008;29(8):984–93. doi:10.1016/j.biomaterials.2007.10.014.

    Article  PubMed  CAS  Google Scholar 

  21. Ooms EM, Wolke JGC, van de Heuvel MT, Jeschke B, Jansen JA. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials. 2003;24(6):989–1000. doi:10.1016/S0142-9612(02)00438-6.

    Article  PubMed  CAS  Google Scholar 

  22. Laedrach K, Lukes A, Raveh J. Reconstruction of skull base and fronto-orbital defects following tumor resection. Skull Base Reconstr. 2007;17(1):59–72. doi:10.1055/s-2006-959336.

    Article  Google Scholar 

  23. Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, et al. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—an experimental study in sheep. J Craniomaxillofac Surg. 2005;33(1):37–44. doi:10.1016/j.jcms.2004.09.002.

    PubMed  Google Scholar 

  24. Cattani-Lorente MA, Godin C, Meyer JM. Early strength of glass ionomer cements. Dent Mater. 1993;9(1):57–62. doi:10.1016/0109-5641(93)90107-2.

    Article  PubMed  CAS  Google Scholar 

  25. Tyas MJ, Burrow MF. Adhesive dental materials: a review. Aust Dent J. 2004;49(3):112–21. doi:10.1111/j.1834-7819.2004.tb00059.x.

    Article  PubMed  CAS  Google Scholar 

  26. Boyd D, Towler M, Wren A, Clarkin O. Comparison of an experimental bone cement with surgical Simplex® P, Spineplex® and Cortoss®. J Mater Sci Mater Med. 2008;19(4):1745–52. doi:10.1007/s10856-007-3363-4.

    Article  PubMed  CAS  Google Scholar 

  27. Hatton PV, Hurrell-Gillingham K, Brook IM. Biocompatibility of glass-ionomer bone cements. J Dent. 2006;34:598–601. doi:10.1016/j.jdent.2004.10.027.

    Article  PubMed  CAS  Google Scholar 

  28. Boyd D, Towler MR. The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. J Mater Sci Mater Med. 2005;V16(9):843–50. doi:10.1007/s10856-005-3578-1.

    Article  Google Scholar 

  29. Nicholson JW, Wilson AD. Acid-base cements—their biomedical and industrial applications. Cambridge: Cambridge University Press; 1993.

    Google Scholar 

  30. Griffin SG, Hill RG. Influence of glass composition on the properties of glass olyalkenoate cements. Part I: influence of aluminium to silicon ratio. Biomaterials. 1999;20(17):1579–86. doi:10.1016/S0142-9612(99)00058-7.

    Article  PubMed  CAS  Google Scholar 

  31. DeBruyne MAA, DeMoor RJG. The use of glass ionomer cements in both conventional and surgical endodontics. Int Endod J. 2004;37:91–104. doi:10.1111/j.0143-2885.2004.00769.x.

    Article  CAS  Google Scholar 

  32. Ma ZJ, Yamaguchi M. Stimulatory effect of zinc on deoxyribonucleic acid synthesis in bone growth of newborn rats: enhancement with zinc and insulin-like growth factor-I. Calcif Tissue Int. 2001;69(3):158–63. doi:10.1007/s00223-001-2010-1.

    Article  PubMed  CAS  Google Scholar 

  33. Ream LJ. The effects of short-term fluoride ingestion on bone formation and resorption in the rat femur. Cell Tissue Res. 1981;221(2):421–30. doi:10.1007/BF00216745.

    Article  PubMed  ADS  CAS  Google Scholar 

  34. Turner CH, Owan I, Brizendine EJ, Zhang W, Wilson ME, Dunipace AJ. High fluoride intakes cause osteomalacia and diminished bone strength in rats with renal deficiency. Bone. 1996;19(6):595–601. doi:10.1016/S8756-3282(96)00278-5.

    Article  PubMed  CAS  Google Scholar 

  35. Geyer G, Baier G, Helms J. Epidural application of ionomeric cement implants. Experimental and clinical results. J Laryngol Otol. 1998;112:344–50. doi:10.1017/S0022215100140435.

    Article  PubMed  CAS  Google Scholar 

  36. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, et al. Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. NeuroToxicology. 2002;23(6):761–74. doi:10.1016/S0161-813X(02)00097-9.

    Article  PubMed  CAS  Google Scholar 

  37. Reusche E, Pilz P, Oberascher G, Lindner B, Egensperger R, Gloeckner K, et al. Subacute fatal aluminum encephalopathy after reconstructive otoneurosurgery: a case report. Hum Pathol. 2001;32(10):1136–40. doi:10.1053/hupa.2001.28251.

    Article  PubMed  CAS  Google Scholar 

  38. Boyd D, Towler M, Law R, Hill R. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. J Mater Sci Mater Med. 2006;17(5):397–402. doi:10.1007/s10856-006-8465-x.

    Article  PubMed  CAS  Google Scholar 

  39. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng. 1998;86(5):521–2. doi:10.1016/S0922-338X(98)80165-7.

    Article  CAS  Google Scholar 

  40. Boyd D, Clarkin OM, Wren AW, Towler MR. Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties. Acta Biomater. 2008;4(2):425–31. doi:10.1016/j.actbio.2007.07.010.

    Article  PubMed  CAS  Google Scholar 

  41. Li J, Liu Y, Liu Y, Soremark R. Bonding strength of glass ionomers to dense synthetic hydroxyapatite and fluoroapatite ceramics. Acta Odontol Scand. 1996;54(1):19–23. doi:10.3109/00016359609003504.

    Article  PubMed  CAS  Google Scholar 

  42. Hinoura K, Miyazaki M, Onose H. Dentin bond strength of light-cured glass-ionomer cements. J Dent Res. 1991;70(12):1542–4.

    PubMed  CAS  Google Scholar 

  43. Hibino Y, Kuramochi K-I, Hoshino T, Moriyama A, Watanabe Y, Nakajima H. Relationship between the strength of glass ionomers and their adhesive strength to metals. Dent Mater. 2002;18(7):552–7. doi:10.1016/S0109-5641(01)00086-0.

    Article  PubMed  CAS  Google Scholar 

  44. Della Bona A, van Noort R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J Dent Res. 1995;74(9):1591–6. doi:10.1177/00220345950740091401.

    Article  PubMed  CAS  Google Scholar 

  45. Maurer P, Bekes K, Gernhardt CR, Schaller H-G, Schubert J. Tensile bond strength of different adhesive systems between bone and composite compared: an in vitro study. J Craniomaxillofac Surg. 2004;32(2):85–9. doi:10.1016/j.jcms.2003.11.001.

    PubMed  Google Scholar 

  46. Cook RJ, Thompson ID, Robinson PD, Watson TF. A novel real-time confocal imaging technique for examining host-implant interfacial shear failure patterns. J Microsc. 2006;223(2):96–106. doi:10.1111/j.1365-2818.2006.01602.x.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  47. Towler MR, Gibson IR. The effect of low levels of zirconia addition on the mechanical properties of hydroxyapatite. J Mater Sci Lett. 2001;20(18):1719–22. doi:10.1023/A:1012435124012.

    Article  CAS  Google Scholar 

  48. Ma J, Wong H, Kong LB, Peng KW. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology. 1999;14:619–23. doi:10.1088/0957-4484/14/6/310.

    Article  ADS  Google Scholar 

  49. de Andrade MC, Filgueiras MR, Ogasawara T. Nucleation and growth of hydroxyapatite on titanium pretreated in NaOH Solution: experiments and thermodynamic explanation. J Biomed Mater Res. 1999;46(4):441–6. doi:10.1002/(SICI)1097-4636(19990915)46:4<441::AID-JBM1>3.0.CO;2-9.

    Article  PubMed  Google Scholar 

  50. De Barra E, Hill RG. Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements. Biomaterials. 1998;19(6):495–502. doi:10.1016/S0142-9612(97)00129-4.

    Article  PubMed  Google Scholar 

  51. Sullivan A, Hill R. Influence of poly(acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements based on waste gasifier slags. J Mater Sci. 2000;35:1125–34. doi:10.1023/A:1004763815097.

    Article  CAS  Google Scholar 

  52. Leevers PS, Williams JG. Material and geometry effects on crack shape in double torsion testing. J Mater Sci. 1985;20(1):77–84. doi:10.1007/BF00555901.

    Article  ADS  Google Scholar 

  53. Egan BJ, Delatycki O. Double torsion fracture testing of high-density polyethylene. J Mater Sci. 1994;29(22):6026–32. doi:10.1007/BF00366889.

    Article  ADS  CAS  Google Scholar 

  54. Nash WP. Analysis of oxygen with the electron microprobe: applications to hydrated glass and minerals. Am Mineral. 1992;77:453–7.

    CAS  Google Scholar 

  55. Nishiguchi S, Nakamura T, Kobayashi M, Kim H-M, Miyaji F, Kokubo T. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20(5):491–500. doi:10.1016/S0142-9612(98)90203-4.

    Article  PubMed  CAS  Google Scholar 

  56. Kim HB, Hayashi M, Nakatani K, Kitamura N, Sasaki K, Hotta J, et al. In situ measurements of ion-exchange processes in single polymer particles: laser trapping microspectroscopy and confocal fluorescence microspectroscopy. Anal Chem. 1996;68(3):409–14. doi:10.1021/ac951058c.

    Article  CAS  Google Scholar 

  57. Lee BH, Kim JK, Kim YD, Choi K, Lee KH. In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments. J Biomed Mater Res A. 2004;69A(2):279–85. doi:10.1002/jbm.a.20126.

    Article  CAS  Google Scholar 

  58. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng Rep. 2004;47(3–4):49–121. doi:10.1016/j.mser.2004.11.001.

    Article  Google Scholar 

  59. Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, et al. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res. 2000;79(2):709–14. doi:10.1177/00220345000790020301.

    Article  PubMed  CAS  Google Scholar 

  60. Wilson AD, Prosser HJ, Powis DM. Mechanism of adhesion of polyelectrolyte cements to hydroxyapatite. J Dent Res. 1983;62(5):590–2.

    PubMed  CAS  Google Scholar 

  61. Hill RG. The fracture properties of glass polyalkenoate cements as a function of cement age. J Mater Sci. 1993;28(14):3851–8. doi:10.1007/BF00353190.

    Article  ADS  CAS  Google Scholar 

  62. Charles C. Bonding orthodontic brackets with glass-ionomer cement. Biomaterials. 1998;19(6):589–91. doi:10.1016/S0142-9612(97)00141-5.

    Article  PubMed  CAS  Google Scholar 

  63. Casanellas JM, Navarro JL, Espias A, Gil X. Retention of a cylindroconical post comparing various cements. IADR/CED meeting. 1999, Madrid, Spain.

  64. Pivovarov MM. On the quantitative criterion for basicity of oxides. Glass Phys Chem. 2001;27(1):22–7. doi:10.1023/A:1009503703047.

    Article  CAS  Google Scholar 

  65. Kijeński J, Marczewski M, Malinowski S. Influence of sodium on the physico-chemical properties of oxides. Part II. Semiconductors—Cr2O3, TiO2, NiO and ZnO. Reaction Kinet Catal Lett. 1977;7(2):157–62. doi:10.1007/BF02061832.

    Article  Google Scholar 

  66. Pham MT, Maitz MF, Matz W, Reuther H, Richter E, Steiner G. Promoted hydroxyapatite nucleation on titanium ion-implanted with sodium. Thin Solid Films. 2000;379(1–2):50–6. doi:10.1016/S0040-6090(00)01553-4.

    Article  ADS  CAS  Google Scholar 

  67. Ireland R. Clinical textbook of dental hygiene and therapy. Ames, Iowa, USA: Blackwell-Munksgaard; 2006.

    Google Scholar 

  68. Materials ASfTa. Standard test method for linear-elastic plane-strain fracture toughness K1c of metallic materials. 2008.

  69. Davies JP, O’Connor DO, Greer JA, Harris WH. Comparison of the mechanical properties of simplex P, zimmer regular, and LVC bone cements. J Biomed Mater Res. 1987;21(6):719–30. doi:10.1002/jbm.820210604.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The assistance of Nigel Bubb and Antoni Cami, University of Leeds and the financial assistance of the Technology Development Fund, Enterprise Ireland (#TD/2005/327) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Towler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkin, O., Boyd, D. & Towler, M.R. Comparison of failure mechanisms for cements used in skeletal luting applications. J Mater Sci: Mater Med 20, 1585–1594 (2009). https://doi.org/10.1007/s10856-009-3724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3724-2

Keywords

Navigation