Skip to main content
Log in

Improvement of cytocompatibility of electrospinning PLLA microfibers by blending PVP

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, microfiber films were used as scaffolds for the purpose of vascular tissue engineering. The microfiber films were prepared by electrospinning of poly (l-lactide) (PLLA) and polyvinyl pyrrolidone (PVP). PLLA and PVP with different ratios were blended with dichloromethane as a spinning solvent at room temperature. The properties of the composite microfiber films were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and contact angle measurement. The SEM images showed that the morphology of the microfiber films was mainly affected by the weight ratios of PLLA/PVP. The DSC results demonstrated that PLLA and PVP mixed uniformly. And the hydrophilicity of the films measured increased along with the decrease of the PLLA/PVP ratio. Vascular smooth muscle cells (VSMCs) were used to test the cytocompatibility. Cell morphology and cell proliferation were measured by SEM, laser scanning confocal microscopy (LSCM) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay after 2, 4, 6 days of culture. The results indicated that the cell morphology and proliferation on the composite films were better than that on the pure PLLA film. Furthermore, morphology and proliferation of VSMCs became better with decreasing of the weight ratio of PLLA/PVP. In addition, adhesion of platelet on the films was observed by SEM. The SEM images showed that the number of adhered platelets decreased with increment of PVP content in the films. The electrospinning microfiber composite films of PLLA and PVP would have potential use as the scaffolds for vascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.L. Tsang, S.N. Bhatia, Fabrication of three-dimensional tissues. Adv. Biochem. Eng. Biotechnol. 103, 189 (2007)

    PubMed  CAS  Google Scholar 

  2. K.D. Andrews, J.A. Hunt, R.A. Black, Technology of electrostatic spinning for the production of polyurethane tissue engineering scaffolds. Polym. Int. 57, 203 (2008). doi:10.1002/pi.2317

    Article  CAS  Google Scholar 

  3. W.S. Li, Y. Guo, H. Wang, D.J. Shi, C.F. Liang, Z.P. Ye, F. Qing, J. Gong, Electrospun nanofibers immobilized with collagen for neural stem cells culture. J. Mater. Sci.: Mater. Med. 19, 847 (2008). doi:10.1007/s10856-007-3087-5

    Article  CAS  Google Scholar 

  4. A. Martins, J.V. Araujo, R.L. Reis, N.M. Neves, Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine 2, 929 (2007). doi:10.2217/17435889.2.6.929

    Article  PubMed  Google Scholar 

  5. O. Ayodeji, E. Graham, D. Kniss, J. Lannutti, D. Tomasko, Carbon dioxide impregnation of electrospun polycaprolactone fibers. J. Supercrit. Fluid. 41, 173 (2007). doi:10.1016/j.supflu.2006.09.011

    Article  CAS  Google Scholar 

  6. F. Chen, C.N. Lee, S.H. Teoh, Nanofibrous modification on ultra-thin poly(epsilon-caprolactone) membrane via electrospinning. Mater. Sci. Eng. C 27(2), 325 (2007). doi:10.1016/j.msec.2006.05.004

    Article  CAS  Google Scholar 

  7. J.B. Chiu, C. Liu, B.S. Hsiao, B. Chu, M. Hadjiargyrou, Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules. J. Biomed. Mater. Res. A 83A, 1117 (2007). doi:10.1002/jbm.a.31279

    Article  CAS  Google Scholar 

  8. J.S. Choi, H.S. Yoo, Electrospun nanofibers surface-modified with fluorescent proteins. J. Bioact. Compat. Polym. 22, 508 (2007). doi:10.1177/0883911507081101

    Article  CAS  Google Scholar 

  9. Y.B. Zhu, M.F. Leong, W.F. Ong, M.B. Chan-Park, K.S. Chian, Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28, 861 (2007). doi:10.1016/j.biomaterials.2006.09.051

    Article  PubMed  CAS  Google Scholar 

  10. P.C. Zhao, H.L. Jiang, H. Pan, K.J. Zhu, W. Chen, Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning. J. Biomed. Mater. Res. A 83A, 372 (2007). doi:10.1002/jbm.a.31242

    Article  CAS  Google Scholar 

  11. H.W. Tong, M. Wang, Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications. J. Nanosci. Nanotechnol. 7, 3834 (2007). doi:10.1166/jnn.2007.051

    Article  PubMed  CAS  Google Scholar 

  12. M. Spasova, O. Stoilova, N. Manolova, I. Rashkov, G. Altankov, Preparation of PLIA/PEG nanofibers by electrospinning and potential applications. J. Bioact. Compat. Polym. 22, 62 (2007). doi:10.1177/0883911506073570

    Article  CAS  Google Scholar 

  13. F. Yang, X. Qu, W.J. Cui, J.Z. Bei, F.Y. Yu, S.B. Lu, S.G. Wang, Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials 27, 4923 (2006). doi:10.1016/j.biomaterials.2006.05.028

    Article  PubMed  CAS  Google Scholar 

  14. C.T. Lee, C.P. Huang, Y.D. Lee, Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering. Biomacromolecules 7, 2200 (2006). doi:10.1021/bm060451x

    Article  PubMed  CAS  Google Scholar 

  15. M.V. Risbud, S.V. Bhat, Properties of polyvinyl pyrrolidone/beta-chitosan hydrogel membranes and their biocompatibility evaluation by haemorheological method. J. Mater. Sci.: Mater. Med. 12, 75 (2001). doi:10.1023/A:1026769422026

    Article  CAS  Google Scholar 

  16. A. Benahmed, M. Ranger, J.C. Leroux, Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide). Pharm. Res. 18, 323 (2001). doi:10.1023/A:1011054930439

    Article  PubMed  CAS  Google Scholar 

  17. S.J. Lee, J.J. Yoo, G.J. Lim, A. Atala, J. Stitze, In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. A 83A, 999 (2007). doi:10.1002/jbm.a.31287

    Article  CAS  Google Scholar 

  18. P.D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, M. Moller, Electrospinning of polymer melts: phenomenological observations. Polymer (Guildf) 48, 6823 (2007). doi:10.1016/j.polymer.2007.09.037

    Article  CAS  Google Scholar 

  19. R. Chen, J.A. Hunt, Biomimetic materials processing for tissue-engineering processes. J. Mater. Chem. 17, 3974 (2007). doi:10.1039/b706765h

    Article  CAS  Google Scholar 

  20. M. Peesan, R. Rujiravanit, P. Supaphol, Electrospinning of hexanoyl chitosan/polylactide blends. J. Biomater. Sci. Polym. Ed. 17, 547 (2006). doi:10.1163/156856206776986251

    Article  PubMed  CAS  Google Scholar 

  21. Y.T. Jia, J. Gong, X.H. Gu, H.Y. Kim, J. Dong, X.Y. Shen, Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 67, 403 (2007). doi:10.1016/j.carbpol.2006.06.010

    Article  CAS  Google Scholar 

  22. X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna, P. Electrospun, LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25, 1883 (2004). doi:10.1016/j.biomaterials.2003.08.042

    Article  PubMed  CAS  Google Scholar 

  23. A. Welle, M. Kroger, M. Doring, K. Niederer, E. Pindel, S. Chronakis, Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials 28, 2211 (2007). doi:10.1016/j.biomaterials.2007.01.024

    Article  PubMed  CAS  Google Scholar 

  24. S. Borhani, S.A. Hosseini, S.G. Etemad, J. Militky, Structural characteristics and selected properties of polyacrylonitrile nanofiber mats. J. Appl. Polym. Sci. 108(5), 2994 (2008). doi:10.1002/app.27904

    Article  CAS  Google Scholar 

  25. Y. Xin, Z.H. Huang, J.F. Chen, C. Wang, Y.B. Tong, S.D. Liu, Fabrication of well-aligned PPV/PVP nanofibers by electrospinning. Mater. Lett. 62, 991 (2008). doi:10.1016/j.matlet.2007.07.031

    Article  CAS  Google Scholar 

  26. O. Mert, E. Doganci, H.Y. Erbil, A.S. Dernir, Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR. Langmuir 24, 749 (2008). doi:10.1021/la701966d

    Article  PubMed  CAS  Google Scholar 

  27. Y.Z. Wu, Y. Hu, J.Y. Cai, S.Y. Ma, X.P. Wang, Coagulation property of hyaluronic acid-collagen/chitosan complex film. J. Mater. Sci.: Mater. Med. 19, 3621 (2008). doi:10.1007/s10856-008-3477-3

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was in part supported by National Natural Science Foundation of China (50573044 & 50830102) and National Basic Research Program (2005CB623905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Zhai Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Cui, FZ., Jiao, YP. et al. Improvement of cytocompatibility of electrospinning PLLA microfibers by blending PVP. J Mater Sci: Mater Med 20, 1331–1338 (2009). https://doi.org/10.1007/s10856-008-3686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3686-9

Keywords

Navigation