Skip to main content
Log in

Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The objective was to compare fracture toughness (KIc), stress corrosion susceptibility coefficient (n), and stress intensity factor threshold for crack propagation (KI0) of two porcelains [VM7/Vita (V) and d.Sign/Ivoclar (D)], two glass-ceramics [Empress/Ivolcar (E1) and Empress2/Ivlocar (E2)] and a glass-infiltrated alumina composite [In-Ceram Alumina/Vita (IC)]. Disks were constructed according to each manufacturer’s processing method, and polished before induction of cracks by a Vickers indenter. Crack lengths were measured under optical microscopy at times between 0.1 and 100 h. Specimens were stored in artificial saliva at 37°C during the whole experiment. KIc and n were determined using indentation fracture method. KI0 was determined by plotting log crack velocity versus log KI. Microstructure characterization was carried out under SEM, EDS, X-ray diffraction and X-ray fluorescence. IC and E2 presented higher KIc and KI0 compared to E1, V, and D. IC presented the highest n value, followed by E2, D, E1, and V in a decreasing order. V and D presented similar KIc, but porcelain V showed higher KI0 and lower n compared to D. Microstructure features (volume fraction, size, aspect ratio of crystalline phases and chemical composition of glassy matrix) determined KIc. The increase of KIc value favored the increases of n and KI0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.Y. Thompson, K.J. Anusavice, A. Naman, H.F. Morris, J. Dent. Res. 73, 1824 (1994)

    PubMed  CAS  Google Scholar 

  2. M.L. Myers, J.W. Ergle, C.W. Fairhurst, R.D. Ringle, Int. J. Prosthodont. 7, 549 (1994)

    PubMed  CAS  Google Scholar 

  3. R. Morena, G.M. Beaudreau, P.E. Lockwood, A.L. Evans, C.W. Fairhurst, J. Dent. Res. 65, 993 (1986)

    PubMed  CAS  Google Scholar 

  4. D.J. Green, An Introduction to the Mechanical Properties of Ceramics. 2nd edn. (Cambridge University Press, Cambridge, 1998)

  5. J.B. Watchman Jr., Mechanical Properties of Ceramics (Wiley, New York, 1996)

    Google Scholar 

  6. S.M. Wiederhorn, Subcritical Crack Growth in Ceramics (Plenum, New York, 1974)

    Google Scholar 

  7. P.K. Gupta, N.J. Jubb, J. Am. Ceram. Soc. 64, 112 (1981). doi:10.1111/j.1151-2916.1981.tb09909.x

    Article  Google Scholar 

  8. R. Marx, F. Jungwirth, P.O. Walter, Biomed. Eng. Online 3, 41 (2004). doi:10.1186/1475-925X-3-41

    Article  PubMed  Google Scholar 

  9. H.N. Yoshimura, P.F. Cesar, W.G. Miranda Jr, C.C. Gonzaga, C.Y. Okada, J. Am. Ceram. Soc. 88, 1680 (2005). doi:10.1111/j.1551-2916.2005.00334.x

    Article  CAS  Google Scholar 

  10. ASTM, in Flexural Strength of Advanced Ceramics at Ambient Temperature (American Society for Testing Materials, Westerville, 2002)

  11. K.T. Wan, N. Aimard, S. Lathabai, R.G. Horn, B.R. Lawn, J. Mater. Res. 5, 172 (1990). doi:10.1557/JMR.1990.0172

    Article  ADS  CAS  Google Scholar 

  12. J. Chevalier, S. Deville, G. Fantozzi, J.F. Bartolome, C. Pecharroman, J.S. Moya, L.A. Diaz, R. Torrecillas, Nano. Lett. 5, 1297 (2005). doi:10.1021/nl050492j

    Article  PubMed  CAS  ADS  Google Scholar 

  13. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). doi:10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  14. W. Holand, G. Beall, Glass-Ceramic Technology (The American Ceramic Society, Westerville, 2002)

    Google Scholar 

  15. P.F. Cesar, H.N. Yoshimura, W.G. Miranda Jr, C.Y. Okada, J. Dent. 33, 721 (2005). doi:10.1016/j.jdent.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  16. M. Albakry, M. Guazzato, M.V. Swain, J. Biomed. Mater. Res. B Appl. Biomater. 71, 99 (2004). doi:10.1002/jbm.b.30066

    Article  PubMed  CAS  Google Scholar 

  17. H.H. Lee, M. Kon, K. Asaoka, Dent. Mater. J. 16, 134 (1997)

    PubMed  CAS  Google Scholar 

  18. I.L. Denry, J.R. Mackert Jr, J.A. Holloway, S.F. Rosenstiel, J. Dent. Res. 75, 1928 (1996)

    Article  PubMed  CAS  Google Scholar 

  19. R.H. Doremus, Glass Science (Wiley, New York, 1994), p. 339

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian agencies FAPESP and CAPES for the financial support of the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Francisco Cesar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzaga, C.C., Yoshimura, H.N., Cesar, P.F. et al. Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations. J Mater Sci: Mater Med 20, 1017–1024 (2009). https://doi.org/10.1007/s10856-008-3667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3667-z

Keywords

Navigation